
 

Supplementary Appendix for “Identifying predictors of clinical outcomes 

using the projection-predictive feature selection – a proof of concept on 

the example of Crohn's disease” 

1 Statistical methods 

1.1 Rationale 

The rationale behind our statistical approach (a Bayesian ordinal regression model and a projection-

predictive feature selection) is as follows: 

1. Existing disease activity indices (DAIs) (1–6) largely rely on the discretization of predictors, 

which comes with a loss of information and precision. 

2. Regression models provide a natural way for prediction (7) and can avoid the discretization of 

predictors. 

3. Since the outcome (the endoscopic score) is ordinal, an ordinal regression model is the most 

appropriate one. 

4. Bayesian statistics has various advantages compared to frequentist statistics, most notably a 

more intuitive interpretation (8–10). Thus, it makes sense to use a Bayesian ordinal regression 

model. 

5. In a Bayesian framework, the projection-predictive feature selection (PPFS) implemented in 

the R (11) package projpred (12–14) is a state-of-the-art variable selection method (13–15) 

which is especially suitable for prediction problems like in our case. In particular, the PPFS 

allows for valid post-selection inference (apart from the potential—but usually small (15)—

overfitting induced by the selection of the submodel size) because it does not discard the 

uncertainty inherent to the reference model (here the full model containing all candidate 

predictors) (15). 

The rather complex calculation of the predictive probabilities (based on the model selected by the 

PPFS) is performed most conveniently by a Shiny (16) web application that users interact with via a 

simple graphical interface. 

In settings with a binary outcome, a receiver operating characteristic (ROC) curve is a widely-applied 

and useful tool to compare different diagnostic tests (or DAIs, which may be considered as diagnostic 

tests). In our case, however, the outcome (the endoscopic score) has four categories, hence the need 

for a more general method. 

1.2 Bayesian statistics 

An introduction to Bayesian ordinal regression models (especially in the context of the R package 

brms (17–19)) is given in (20). For readers not familiar with Bayesian statistics (in general), we give 

a short introduction here, taken mainly from the shinybrms (21) application: The fundamental 

principle of Bayesian statistics is Bayes’ theorem. In the context relevant for this publication, Bayes’ 

theorem may be simplified to the statement that the joint posterior density of all parameters in the 

regression model is proportional to the product of their joint prior density and the likelihood. The 
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posterior distribution (corresponding to the posterior density) reflects the knowledge about the 

parameters after seeing the data. The prior distribution (corresponding to the prior density) reflects 

the knowledge about the parameters before having seen the data. The likelihood corresponds to the 

distribution of the outcome conditional on the parameters and the predictors. Thus, after having 

specified the likelihood and the prior (distribution), a Bayesian data analysis aims to infer the 

posterior (distribution) and then to perform analyses based on the posterior, e.g., by plotting marginal 

posterior distributions and calculating their 2.5%, 50%, and 97.5% quantiles. Inferring the posterior 

is the Bayesian way to estimate unknown parameters. 

1.3 Projection-predictive feature selection 

The projection-predictive feature selection (PPFS) implemented in the R package projpred (12–14) is 

a predictor selection method whose resulting models have a predictive performance close to the gold 

standard prediction method (Bayesian model averaging or—equivalently—a spike-and-slab prior 

applied to the full model) (15). In the following, we give more details on the PPFS in general as well 

as on its use in our proof-of-concept study. In doing so, we mention to which values the arguments of 

involved R functions are set, at least for the most important ones. The full R code is supplied together 

with our manuscript. 

The PPFS requires a reference model, which should be the best model (in terms of predictive 

performance) one can construct (13). Our approach of constructing the reference model from the full 

model (i.e., including all candidate predictors) with a regularized horseshoe (RH) prior (22) is a 

standard approach for constructing the reference model, as previously described (13–15, 23). The RH 

prior is a so-called “shrinkage” prior for population-level regression coefficients (also termed “fixed” 

effects). The idea of the RH prior is to shrink irrelevant coefficients to zero and leave relevant 

coefficients as they are. We infer the global scale parameter of the RH prior from the ratio of the 

number of a priori deemed relevant regression coefficients to the number of a priori deemed 

irrelevant regression coefficients. Thereby, we set the number of a priori deemed relevant regression 

coefficients to 5, which is based on a rough guess of the total number of regression coefficients 

implied by the existing disease activity indices (DAIs). However, we have found our results to be 

largely insensitive to this number of a priori deemed relevant regression coefficients. 

With the reference model set up, the PPFS first tries to find the smallest subset of predictors which 

still achieves a predictive performance as close as possible to the reference model’s predictive 

performance. To avoid the investigation of all possible subsets of predictors (i.e., all possible 

submodels, which is computationally expensive), the PPFS runs a heuristic search to identify a single 

(best) submodel for each submodel size. For a multilevel reference model as in our case, the so-called 

“forward search” is the only option available in projpred. During this forward search, the reference 

model is “projected” onto each submodel that the search passes through (in fact, this projection is a 

central component of the PPFS and achieved by minimizing the discrepancy from the reference 

model’s predictive distribution to the respective submodel’s predictive distribution). For the 

“cumulative” outcome family we are using here, we apply the latent projection (24) as implemented 

in projpred. For post-projection analyses, we rely on projpred’s default of so-called “response-scale 

analyses” which means that internally, the ordinal intercepts (the latent category thresholds) from the 

reference model are employed to turn a latent Gaussian submodel back into an ordinal regression 

model. To save computation time, we stop the forward search at submodel size 3 (this is sufficient 

here to see that size 2 should be chosen, see Figure 2 of the main article). For the number of clusters 

(of posterior draws) employed during that search, we use the default value of 20. We also tried a high 
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value of 800 clusters (results not shown), but the full-data predictor ranking stayed the same and the 

fold-wise predictor rankings essentially, too (there were only two CV folds with very minor 

differences in the predictor rankings). Thus, we picked the default value of 20 clusters which is 

computationally easier to handle. After the search part, the PPFS consists of a performance 

evaluation part, yielding a plot of a user-specified predictive performance measure in dependence of 

the submodel size. As predictive performance measure, we choose the mean log predictive density 

(MLPD) because it is well-established (13, 25) and because exponentiating it to the base of the 

natural logarithm gives the geometric mean predictive density (GMPD) as a closely related predictive 

performance measure which has an intuitive interpretation in our case: Here, the GMPD is the 

geometric mean of the predictive probabilities at the observed outcome categories (and hence 

restricted to the interval [0, 1]). For the creation of the predictive performance plot that is used for 

deciding a submodel size, the projpred package projects the reference model onto the best submodel 

of each size again. In these re-projections, we use 2666 thinned posterior draws (2666 is calculated as 

8000 / 3, rounded down to the nearest integer; 8000 is the number of post-warmup posterior draws 

for the reference model, see section 1.4 here in the Supplementary Appendix). We cannot use the full 

8000 posterior draws but only approximately every third of them due to computational constraints. 

However, since results were only slightly affected by our change from the default of 400 thinned 

draws (not shown here) to 2666 thinned draws, we think that switching to the full 8000 draws would 

have had only a very minor impact on the results. By inspecting the predictive performance plot 

created from the PPFS’s performance evaluation results, the user then has to select a submodel size. 

Here, we choose that submodel size from which on the predictive performance measure does not 

improve anymore. 

With a chosen submodel size, the selected submodel is given by the (best) submodel corresponding 

to that chosen submodel size. The reference model is then projected once again onto the selected 

submodel. Here, we perform this final projection using the “draw-by-draw” method (13). These final 

projection results are used for our Shiny web application as well as for Figure 5 of the main article. 

For the PPFS, it is recommended to perform a cross-validation (CV) around the heuristic search and 

the performance evaluation (13, 15). Here, we perform a 25-fold CV. 

Furthermore, we guard against the possibility of an illegitimate advantage of our approach (which 

considers group-level effects for the patient identifiers (patient IDs) as a candidate predictor) 

compared to the existing DAIs (which do not use group-level effects, see section 1.5 here in the 

Supplementary Appendix) by treating the original patient IDs as new patient IDs during predictions. 

This is achieved by setting projpred.mlvl_pred_new (a global R option used by the projpred 

package) to TRUE. This choice also reflects the later prediction task in clinical practice: In the Shiny 

application that we propose, all user input is treated as that for a new patient because the purpose of 

the Shiny application is to generalize prediction beyond the dataset used for training the model. 

The reason why we subject the IBD center as well as the group-level effects for the patient IDs to 

variable selection is simply a technical one: Within projpred, it is currently a lot easier (and—in some 

regard—more efficient in terms of memory used) to consider all predictors from the reference model 

as candidate predictors than to exclude some. Retrospectively, our approach can be justified by the 

fact that neither of these two terms has been among the two most relevant terms (neither in the full-

data nor in the fold-wise searches; fold-wise predictor rankings not shown here for the sake of 

brevity). If either of these two terms had been among the two most relevant, then it would have made 

sense to run a final variable selection with these two terms excluded from the set of candidate 
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predictors. Nonetheless, first running the “simpler” variable selection (with these two terms 

considered as candidate predictors) can give helpful insight: If they had been among the two most 

relevant terms, this would have meant that they are relevant for prediction, which would have 

revealed some important peculiarity of the data. 

1.4 Reference model fit and analysis 

For fitting our reference model, we increase the number of Markov chain Monte Carlo (MCMC) 

iterations per Markov chain from the default (2000) to 4000. Given that half of this number is for 

warmup (by default) and given the default of 4 Markov chains, this yields a total of 8000 post-

warmup posterior draws used for inference here. Furthermore, we set the target Metropolis 

acceptance rate to 0.99 (the default in the R package rstanarm (26), for example, is 0.95 but we had to 

increase it a little further to aim for smaller step sizes of the underlying special MCMC sampler and 

hence to eliminate spurious divergences) and the maximum tree depth to 15 (which is the default for 

most rstanarm models, for example). 

As part of a Bayesian modeling workflow (27), it is recommended to perform posterior predictive 

checks (PPCs): A good model should be able to generate outcome values close to the observed ones 

when giving the observed data to the model and letting the model learn from it. Here, we do not 

present PPCs for the reference model since the reference model should have a PPC performance at 

least as good as the selected submodel. We were able to confirm this in our case (results not shown). 

Furthermore, Figure 6 of the main article includes the predictive performance of the selected 

submodel and thus can also be interpreted as a conservative out-of-sample PPC for the reference 

model. 

As another step to ensure that we have a reasonable reference model, we use the R package loo (28) 

to estimate the Pareto k-values and the effective number of parameters from a Pareto-smoothed 

importance sampling leave-one-out cross-validation (PSIS-LOO CV) (29, 30): 

1. For each observation (visit), we obtain a single estimated Pareto k-value. High Pareto k-

values (> 0.7) indicate highly influential observations (29, 30), which is usually undesired and 

often requires adjustments to the model. Even more importantly, they also indicate that the 

corresponding PSIS-LOO CV weights (as well as all downstream quantities based upon them, 

including the effective number of parameters from the next step) may be unreliable. 

2. After inspecting the Pareto k-values from the original PSIS-LOO CV, we update the PSIS-

LOO CV results for visits with a Pareto k-value > 0.7 by refitting with each of these 

observations left out, as implemented in the brms package. Then, after these updates, we 

obtain a single effective number of parameters for the whole model. We wish to have an 

effective number of parameters smaller than the number of visits and smaller than the total 

number of parameters in the model (31). 

Since the primary purpose of our regression model is prediction, we do not visualize the marginals of 

the selected submodel’s projected posterior directly, but we create conditional-effects plots (Figure 5 

of the main article) whose interpretation is explained in the respective figure caption. 
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1.5 Comparison of the selected submodel to existing pediatric Crohn’s disease activity indices 

Missing values in our dataset caused different numbers of usable visits for the different DAIs when 

performing a complete-case analysis for each DAI. In principle, it would have been desirable to train 

the DAIs and cross-validate their predictive performance on a common dataset (the largest possible 

one), but reducing our proof-of-concept dataset to the largest possible common dataset across all 

DAIs would have led to only 46 visits. Thus, the comparison of the DAIs presented in Figure 6 of the 

main article takes the maximum possible number of visits for a separate complete-case analysis of 

each DAI (which results in datasets of differing sizes for the different DAIs, as indicated by “N” in 

Figure 6). A future validation study of our proof-of-concept analysis presented here should conduct 

the comparison of all DAIs on a common dataset. 

The comparison itself takes place via cross-validated predictive probabilities (CV-PPs; termed 

“predictive probabilities for the observed endoscopic inflammation” in the main article): First, for 

each existing DAI, we fit one Bayesian ordinal regression model similar to the reference model 

described in section 2.4 of the main article (and in sections 1.3 and 1.4 here in the Supplementary 

Appendix), but with the respective DAI (before any categorization of its score value, i.e., using its 

underlying continuous score) as the only predictor. For the regression coefficient of this single 

predictor, we use brms’s default (flat) prior. (In principle, a flat prior for regression coefficients is not 

recommended due to the risk of overfitting, but in our case, a more restrictive prior could have meant 

a systematic disadvantage for the existing DAIs, and thus an advantage for our selected submodel. In 

this regard, the flat prior is a conservative choice with respect to the comparison with our selected 

submodel.) Then, for a given DAI (either existing or the selected submodel) and a given visit 

𝑖 ∈ {1,… ,𝑁} (with 𝑁 denoting the number of visits), the CV-PP is the probability given to the 

actually observed outcome category of visit 𝑖 by the DAI’s regression model when leaving the CV 

fold containing visit 𝑖 out of the model building process. Thus, higher CV-PPs are better than smaller 

ones. For the existing DAIs, we use a 25-fold CV, as in the PPFS yielding the selected submodel. 

Finally, the CV-PPs are illustrated using separate boxplots (one per DAI) with the individual values 

(those of which the boxplots consist) overlaid as jittered points. Furthermore, we use such jittered 

boxplots also for the CV-PP differences, comparing the selected submodel vs. each existing DAI so 

that a CV-PP difference greater than zero speaks in favor of the selected submodel. 

For each of the existing DAIs, this CV-PP approach implicitly assumes that its underlying continuous 

score has a linear effect on the latent predictor of its ordinal regression model. In section 2.2, we 

provide a sensitivity analysis showing that our results would not have changed much when allowing 

these effects to be nonlinear (using brms’s built-in support for smooth terms; details are provided in 

our publicly available R code). 

1.6 Other R packages 

Other R packages used here are data.table (32), readxl (33), ggplot2 (34, 35), posterior (36), and 

bayesplot (37, 38). For brms, we use the cmdstanr (39) backend. 

2 Results 

2.1 Reference model 

In the reference model, we observed only a single visit with a high Pareto k-value (> 0.7). Given such 

a small number of highly influential observations, we consider this model to be adequate in this 
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regard. The refit for this single visit (see section 1.4 here in the Supplementary Appendix) was 

successful, yielding an estimate for the effective number of parameters of approximately 38.6, which 

is much smaller than the number of visits (131, after exclusion of visits with missing values) and the 

total number of model parameters (118), as desired. 

2.2 Sensitivity analysis for nonlinear effects of the existing DAIs 

Figure A1 replicates Figure 6 from the main article, but allowing for nonlinear effects in the existing 

DAIs’ ordinal regression models. As can be seen by comparing Figure A1A to Figure 6A, this extra 

flexibility mostly leads to very similar CV-PP values, a noticeable exception being the MINI for 

which the median CV-PP increases from ca. 45% to ca. 50%. Interestingly, however, comparing 

Figure A1B to Figure 6B reveals that even for the MINI, this extra flexibility does not change the 

CV-PP difference to the selected submodel considerably (for the MINI, the median CV-PP difference 

even increases when allowing for nonlinear effects, hence speaking more strongly in favor of the 

selected submodel). 
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Figure A1. The same as Figure 1 from the main article, but allowing for nonlinear effects in the 

existing DAIs’ ordinal regression models. 



  Supplementary Material 

 8 

3 REFERENCES 

1. Hyams JS, Ferry GD, Mandel FS, Gryboski JD, Kibort PM, Kirschner BS, et al. Development 

and validation of a pediatric Crohn's disease activity index. J Pediatr Gastroenterol Nutr (1991) 

12:439–47. 

2. Shepanski MA, Markowitz JE, Mamula P, Hurd LB, Baldassano RN. Is an abbreviated Pediatric 

Crohn's Disease Activity Index better than the original? J Pediatr Gastroenterol Nutr (2004) 

39:68–72. 

3. Leach ST, Nahidi L, Tilakaratne S, Day AS, Lemberg DA. Development and assessment of a 

modified Pediatric Crohn Disease Activity Index. J Pediatr Gastroenterol Nutr (2010) 51:232–6. 

doi:10.1097/MPG.0b013e3181d13609 

4. Kappelman MD, Crandall WV, Colletti RB, Goudie A, Leibowitz IH, Duffy L, et al. Short 

pediatric Crohn's disease activity index for quality improvement and observational research. 

Inflamm Bowel Dis (2011) 17:112–7. doi:10.1002/ibd.21452 

5. Turner D, Griffiths AM, Walters TD, Seah T, Markowitz J, Pfefferkorn M, et al. Mathematical 

weighting of the Pediatric Crohn's Disease Activity Index (PCDAI) and comparison with its 

other short versions. Inflamm Bowel Dis (2011) 18:55–62. doi:10.1002/ibd.21649 

6. Cozijnsen MA, Ben Shoham A, Kang B, Choe BH, Choe YH, Jongsma MM, et al. Development 

and validation of the Mucosal Inflammation Noninvasive Index for pediatric Crohn's disease. 

Clin Gastroenterol Hepatol (2020) 18:133-140.e1. doi:10.1016/j.cgh.2019.04.012 

7. Gelman A, Hill J, Vehtari A. Regression and Other Stories. 1st ed. Cambridge, UK: Cambridge 

University Press (2020). 

8. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian Data Analysis. 3rd 

ed. Boca Raton, FL, USA: CRC Press (2014). 

9. StataCorp. Stata Bayesian Analysis Reference Manual. 16th ed. College Station, TX, USA: Stata 

Press (2019). 

10. Weber F, Ickstadt K, Glass Ä. shinybrms: Fitting Bayesian regression models using a graphical 

user interface for the R package brms. R J (2022) 14:96–120. doi:10.32614/RJ-2022-027 

11. R Core Team. R: A Language and Environment for Statistical Computing [computer program on 

the Internet]. Version 4.3.0. Vienna, Austria: R Foundation for Statistical Computing (2023). 

Available at: https://www.R-project.org/. 

12. Piironen J, Paasiniemi M, Catalina A, Weber F, Vehtari A. projpred: Projection Predictive 

Feature Selection [computer program on the Internet]. R package, version 2.6.0.9000 (from 

https://github.com/stan-dev/projpred/tree/190a07d4e90d4d2bdc9d8b03a46fcd34a8b05e71) 

(2023). Available at: https://mc-stan.org/projpred/. 

13. Piironen J, Paasiniemi M, Vehtari A. Projective inference in high-dimensional problems: 

prediction and feature selection. Electron J Stat (2020) 14:2155–97. doi:10.1214/20-EJS1711 

14. Catalina A, Bürkner P-C, Vehtari A. Projection predictive inference for generalized linear and 

additive multilevel models. arXiv [Preprint] (2020). Available at: 

https://arxiv.org/abs/2010.06994v1 (Accessed November 03, 2020). 



 9 

15. Piironen J, Vehtari A. Comparison of Bayesian predictive methods for model selection. Stat 

Comput (2017) 27:711–35. doi:10.1007/s11222-016-9649-y 

16. Chang W, Cheng J, Allaire JJ, Sievert C, Schloerke B, Xie Y, et al. shiny: Web Application 

Framework for R [computer program on the Internet]. R package, version 1.7.4 (2022). Available 

at: https://CRAN.R-project.org/package=shiny. 

17. Bürkner P-C. brms: Bayesian Regression Models using ’Stan’ [computer program on the 

Internet]. R package, version 2.19.0 (2023). Available at: https://paul-buerkner.github.io/brms/. 

18. Bürkner P-C. brms: an R package for Bayesian multilevel models using Stan. J Stat Softw (2017) 

80:1–28. doi:10.18637/jss.v080.i01 

19. Bürkner P-C. Advanced Bayesian multilevel modeling with the R package brms. R J (2018) 

10:395–411. doi:10.32614/RJ-2018-017 

20. Bürkner P-C, Vuorre M. Ordinal regression models in psychology: a tutorial. Adv Methods Pract 

Psychol Sci (2019) 2:77–101. doi:10.1177/2515245918823199 

21. Weber F. shinybrms: Graphical User Interface (’shiny’ App) for ’brms’ [computer program on 

the Internet]. R package, version 1.8.0 (2022). Available at: 

https://fweber144.github.io/shinybrms/. 

22. Piironen J, Vehtari A. Sparsity information and regularization in the horseshoe and other 

shrinkage priors. Electron J Stat (2017) 11:5018–51. doi:10.1214/17-EJS1337SI 

23. Pavone F, Piironen J, Bürkner P-C, Vehtari A. Using reference models in variable selection. 

Comput Stat (2022). doi:10.1007/s00180-022-01231-6 

24. Catalina A, Bürkner P, Vehtari A. Latent space projection predictive inference. arXiv [Preprint] 

(2021). Available at: https://arxiv.org/abs/2109.04702v1 (Accessed September 30, 2021). 

25. Vehtari A, Ojanen J. A survey of Bayesian predictive methods for model assessment, selection 

and comparison. Stat Surv (2012) 6:142–228. doi:10.1214/12-SS102 

26. Goodrich B, Gabry J, Ali I, Brilleman S. rstanarm: Bayesian Applied Regression Modeling via 

Stan [computer program on the Internet]. R package, version 2.21.4 (2023). Available at: 

https://mc-stan.org/rstanarm/. 

27. Gelman A, Vehtari A, Simpson D, Margossian CC, Carpenter B, Yao Y, et al. Bayesian 

workflow. arXiv [Preprint] (2020). Available at: https://arxiv.org/abs/2011.01808v1 (Accessed 

November 14, 2020). 

28. Vehtari A, Gabry J, Magnusson M, Yao Y, Bürkner P-C, Paananen T, et al. loo: Efficient Leave-

One-Out Cross-Validation and WAIC for Bayesian Models [computer program on the Internet]. 

R package, version 2.6.0 (2023). Available at: https://mc-stan.org/loo/. 

29. Vehtari A, Gelman A, Gabry J. Practical Bayesian model evaluation using leave-one-out cross-

validation and WAIC. Stat Comput (2017) 27:1413–32. doi:10.1007/s11222-016-9696-4 

30. Vehtari A, Simpson D, Gelman A, Yao Y, Gabry J. Pareto smoothed importance sampling. arXiv 

[Preprint] (2022). Available at: https://arxiv.org/abs/1507.02646v8 (Accessed February 17, 

2023). 

31. Vehtari A, Gabry J, Magnusson M, Yao Y, Bürkner P-C, Paananen T, et al. LOO package 

glossary (2022). https://mc-stan.org/loo/reference/loo-glossary.html [Accessed May 27, 2022]. 



  Supplementary Material 

 10 

32. Dowle M, Srinivasan A. data.table: Extension of ‘data.frame‘ [computer program on the 

Internet]. R package, version 1.14.8 (2023). Available at: https://CRAN.R-

project.org/package=data.table. 

33. Wickham H, Bryan J. readxl: Read Excel Files [computer program on the Internet]. R package, 

version 1.4.2 (2023). Available at: https://CRAN.R-project.org/package=readxl. 

34. Wickham H. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics 

[computer program on the Internet]. R package, version 3.4.2 (2023). Available at: 

https://ggplot2.tidyverse.org. 

35. Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. New York: Springer (2016). 

260 p. 

36. Bürkner P-C, Gabry J, Kay M, Vehtari A, Magnusson M, Češnovar R, et al. posterior: Tools for 

Working with Posterior Distributions [computer program on the Internet]. R package, version 

1.4.1 (2023). Available at: https://mc-stan.org/posterior/. 

37. Gabry J, Mahr T. bayesplot: Plotting for Bayesian Models [computer program on the Internet]. R 

package, version 1.10.0 (2022). Available at: https://mc-stan.org/bayesplot/. 

38. Gabry J, Simpson D, Vehtari A, Betancourt M, Gelman A. Visualization in Bayesian workflow. 

J R Stat Soc Ser A Stat Soc (2019) 182:389–402. doi:10.1111/rssa.12378 

39. Gabry J, Češnovar R. cmdstanr: R Interface to ’CmdStan’ [computer program on the Internet]. R 

package, version 0.5.3 (2022). Available at: https://mc-stan.org/cmdstanr/. 

 


