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1 Summary

1.1 Introduction

Since the discovery of graphene in 2004 [1], materials that feature Dirac-cone physics
have been intensively studied because of their intriguing physical properties and potential
in technological applications (see the various reviews [2–4]). Graphene is a strictly two-
dimensional honeycomb lattice of carbon atoms whose low-energy charge-carrier dynamics
obey the massless pseudospin-1/2 Dirac-Weyl equation (or chiral Weyl equation) where
the chiral centers (or valleys) are the corners K and K′ of the Brillouin zone. This linear
energy spectrum near the Dirac nodal points lends graphene its exotic and ultra-relativistic
properties, such as Klein Tunneling [5–7], anomalous quantum Hall effect [8], and the
nonzero minimal conductivity [8–10].

Other examples of materials dominated by Dirac physics are the surface excitations of 3D
topological insulators [11] and 3D Weyl semimetals [12]. However, condensed matter systems
can possess fermionic excitations with linear dispersions that have no analog in high-energy
physics because the energy dispersions are constrained by the crystal space group instead
of the Poincare group. This permits the study of triply (multiply) degenerate fermions such
as in 3D [13–15] or generalized pseudospin-s Dirac fermions in 2D [16]. Remarkably, such
quasiparticles also possess strictly flat bands [17] (for a review on artificial flat bands, see
Ref. [18]). Flat bands are bands of constant energy irrespective of the crystal momentum,
implying that its charge carriers have zero group velocity (or infinite effective mass) and
a singular density of states. In condensed matter systems, the charge carriers are then
dominated by the electron-electron interaction, making flat bands ideal to study strongly-
correlated many-body phenomena such as ferromagnetism [19, 20], superconductivity [17,
21] or the fractional quantum Hall effect [22, 23]. In this context, nearly flat bands have
been studied in, e.g., magic-angle twisted bilayer graphene [24].
Historically perhaps the first example of such a system is the T3 or dice lattice [25–27],

which is a honeycomb-like lattice with an additional atom C placed at the center of each
hexagon and coupled to only one of the sublattices A or B [cf. Fig. 1]. The spectrum of
the dice model consists of a strictly flat band that crosses the conical intersections of the
two Dirac cones around the K and K′ nodes inherited from graphene [cf. Fig. 1]. The
chiral flat band exists due to the bipartiteness of the dice lattice and is therefore stable
against perturbations of the transfer amplitudes [25, 28, 29]. The enlarged pseudospin-1
Dirac-Weyl equation describes the low-energy dynamics with striking consequences such as
the super-Klein tunneling effect [30]. Although the flat band does not directly contribute
to the transport, it renders the DC conductivity divergent [31] and causes unusual atomic
collapse [32].
The scaling of the transfer amplitude of the additional atoms in the dice lattice with a

parameter α results in the α-T3 lattice [cf. Fig. 1], which continuously interpolates between
graphene (with a decoupled central site) and the dice lattice [33]. Of experimental relevance
is the α-T3 lattice with intermediate α = 1/

√
3 parameter, because it could be realized

in Hg1−xCdxTe at a critical doping [33, 34]. Several suggestions have also been reported
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1 Summary

for an optical α-T3 lattice that would allow tuning of α by dephasing one pair of the
three counter-propagating laser beams [33, 34]. The dice lattice has also been realized in
Josephson arrays [35].

In this thesis, we study the effect of external fields of Dirac-Weyl quasiparticles in α-T3
lattices by the tight-binding model

Hα(t) =−
∑
〈ij〉

Jij(t)a†ibj − α
∑
〈ij〉

Jij(t)c†ibj + H.c. , (1)

where a(†), b(†), and c(†) create (annihilate) a state centered on site A, B, and C, respectively.
The transfer amplitudes that are shown in Tab. 1 incorporate the external fields. The precise
controllability of Dirac-like materials lies at the heart of any technological application [36].
By applying external (static or time-dependent) electric fields via top gates or magnetic
fields, local restrictions like junctions or barriers can be easily imprinted. Gate-induced
quantum dots have attracted much interest in the pseudospin-1/2 and -1 case, because
long-living temporally bound states emerge in the elastic [37, 38] or inelastic (driven)
case [39]. Particularly, we demonstrated in an extension to my master thesis that the
revival of resonant scattering and controlled forward-backward scattering is mutable in
an oscillating dice-quantum dot by means of the oscillation frequency [40]. Subjected to
external gauge fields, the α-dependent Berry phase and the flat band of the α-T3 lattice
result in valley-contrasting Landau level quantization [33, 41], an unconventional quantum
Hall effect [42, 43], and unusual Weiss oscillations [44] in the intermediate 0 < α < 1 regime.
Particularly, the valley degree of freedom can be manipulated by the geometric valley
Hall effect [45], the magnetic Fabry-Pérot interferometry [46], and the valley-polarized
magnetoconductivity [44], crossed Andreev reflection [47]. Dirac-Weyl quasiparticles dressed
by external irradiation can induce Floquet-topological phase transitions [48, 49]. In this

Fig. 1: Illustration of different quantum dot configurations on the α-T3 lattice under external
magnetic or strain fields interpolating between graphene (decoupled flat band) or the dice lattice.
External magnetic and strain fields quantize the energy spectrum into (pseudo-) Landau level.
Quantum dots due to (dynamic) strain fields generate valley-polarized currents.

regard, the application of strain fields to graphene has remarkable consequences for its
electronic and transport properties due to graphene’s ability to withstand high degrees
of deformation [50] and extraordinary electromechanical coupling. When deforming the
honeycomb lattice, the overlap of the π-orbitals is modified, which impacts the electronic
transfer amplitude. Electrons traversing the strained region effectively feel a pseudomagnetic
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1.2 Dirac-Weyl quasiparticles in magnetic fields

field (PMF) that can reach up to 300-800 T [51, 52], which is beyond the current limits for
real magnetic fields in laboratory settings. As a consequence of the time-reversal symmetry,
the induced PMF points in the opposite direction for electrons residing in the K and K′
valley, which can be used to isolate specific valleys. This property is advantageous for
the field of “valleytronics”, where the valley degree of freedom is exploited to manipulate
information [53–55]. Strain fields have been used to design various valleytronic devices like
beam-splitters or filters [56–62].
Firstly, we study Dirac-Weyl quasiparticles in external magnetic fields and confined

to circular quantum dots by opening an infinite gap outside the dot region. The energy
eigenvalues in such an infinite-mass boundary condition are derived as a function of the
scaling parameter. We implement a closed and open(contacted) α-T3 tight-binding lattice-
model of the infinite-mass boundary and validate the low-energy solutions by numerical
exact methods and probe the current-carrying states. Additionally, we probe the sensitivity
of the eigenstates against local perturbations of the mass gap.
Secondly, we study static and dynamic deformations of the α-T3 lattices and show

that this can generate and control valley-polarized currents. Beginning with static strain
fields, we derive the pseudomagnetic fields and the pseudo-Landau levels in the low-energy
continuum approximation. We investigate and assess the transmission through and valley
polarization of a quantum dot imprinted by Gaussian bump deformations in a four-terminal
Hall bar setup through its geometric parameters and the Fermi energy to find optimal
valley-filtering conditions. Additional insight into the excited states and pseudo-Landau
levels is obtained by the spatial variation of the local density of states. Furthermore, we
show that an additional pseudoelectric field is induced by time-periodically driving the
height of the Gaussian bump. To demonstrate the effects of such a drive, we classify the
valley-filter capabilities of a α-T3 Hall bar within the Keldysh non-equilibrium Green’s
function formalism in different regimes by the geometric parameters and scaling parameter.
We demonstrate that the pseudoelectric field is able to induce novel valley-filtering regimes
and localized flat-band states that reach beyond the static case and are also mutable by
the driving frequency. In particular, we investigate the spatial variation of the local current
density inside the Gaussian bump for the different valley-filtering regimes.

Tab. 1: Comparison of the properties of the pseudo- and real magnetic field.

magnetic field pseudomagnetic field

TRS 7 X
transfer amplitude J exp

{
i2π/Φ0

∫ j
i A(r) dr

}
J exp

{
−β(|r′i − r′j |/a− 1)

}
Bmax 45.5 T [63] 300-800 T [52]
E ±~ωc

√
nτ + 1

2(1− τ cos 2ϕ) ±~ωc
√
n+ 1

2(1 + sgn(Bps) cos(2ϕ))

1.2 Dirac-Weyl quasiparticles in magnetic fields

The electronic properties of quantum dots based on α-T3 lattices are frequently investigated
in the massless Dirac-Weyl description to find the low-lying energy states in dependence
of external perturbations such as magnetic fields. However, the analytical modeling of
such nanostructures requires suitable boundary conditions beyond (simple) potential wells
due to Klein tunneling [64] to spatially confine the Dirac-Weyl quasiparticles. Generally,
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1 Summary

the presence of the edges or the precise edge configuration strongly perturbs the electron
and hole states [65–68]. Perhaps the most widely used approach in graphene is the
infinite-mass boundary condition (IMBC) first derived by Berry and Mondragon [69] for
neutrino billiards in the pseudospin-1/2 case (α = 0). In their proposal, a position- and
sublattice-dependent on-site potential opens an effective mass gap in the spectrum outside
the considered nanostructure, which cages Dirac-Weyl quasiparticles by creating perfectly
reflecting boundaries. We give a brief overview of the application of the IMBC in α-T3
quantum dots to obtain the eigenstates of Dirac-Weyl quasiparticles under external magnetic
fields before numerically verifying the solutions in closed and open (contacted) tight-binding
lattice-model.

Quantum dot In article I in Sec. 2.2, we derived a generalized formulation of the IMBC
for the α-T3 lattice around the K [τ = +1] and K′ [τ = −1] point,

ψτ,B = iτ
(
cosϕψτ,Aeiτχ(r) + sinϕψτ,Ce−iτχ(r)

)
, (2)

which relates the components of the wave function at the boundary. The normalized vector
nr = (cosχ(r), sinχ(r)) perpendicular to the boundary inscribes the geometry.
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Fig. 2: (a) Depiction of an α-T3 quantum dot of radius R with perpendicular magnetic field B
and contacted by leads of width lW . The stripe of width W with sublattice-dependent on-site
potential ∆ realizes the infinite mass boundary condition. An additional mass term is placed at the
lead/dot interface (blue) with strength ∆lead. We use kwant library [70] for numerical solving the
tight-binding model. The used parameters are R = 20 nm, W = 5 nm and lW = 80

√
3a− 2W . (b)

Logarithmic density of states (black) of an isolated 1/
√

3-T3 dot for B = 2 T as a function of the gap
size ∆. Analytical solutions for nρ = 1, 2, and 3 and −10 ≤ m ≤ 10 are displayed as convergence
check for τ = +1 [blue dashed] and τ = −1 [red dashed]. Flat bands are marked in yellow. (a) is
adapted from article I.

For a simple application of the IMBC (2), we consider a circular quantum dot of radius
R embedded in an infinite-mass region and subjected to a perpendicular magnetic field
B = Bez that is related to the vector potential A = B/2(−y, x, 0). The Hamiltonian is
given in polar coordinates by

Hϕ
τ = vFSϕτ · (p + eA) + ∆UΘ(r −R) . (3)

The detailed derivation of the eigenfunctions is given in article I Sec. 2.3. These read

ψDτ,s = N

τ cosϕρ−m+τfτ,Ae
i(m−τ)φ

iετρ
−mL−mnτ

(ρ2)eimφ
τ sinϕρ−m−τfτ,Cei(m+τ)φ

 e−
ρ2
2 ψDτ,0 =

sinϕρ−m+τfτ,Ae
i(m−τ)φ

0
cosϕρ−m−τfτ,Cei(m+τ)φ

 e− ρ2
2

(4)
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1.2 Dirac-Weyl quasiparticles in magnetic fields
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Fig. 3: Logarithmic den-
sity of states (black) of
an isolated 1/

√
3-T3 dot

(∆lead = ∆) in depen-
dence of the external
magnetic field. Analyti-
cal solutions for nρ = 1, 2,
and 3 and −10 ≤ m ≤ 10
are incorporated for com-
parison with τ = +1
[blue dashed] and τ = −1
[red dashed], see article I.
Flat bands are marked in
yellow. Reproduced and
adapted from article I.

for the dispersive states (s = sgn(E)) with normalization constant N and the flat band
states, respectively. The Lba(x) are the generalized Laguerre polynomials, and

fτ,A =

−L
−m+1
n+−1 (ρ2), if τ = +1

(n− + 1)L−m−1
n−+1 (ρ2), if τ = −1 fτ,C = f−τ,A . (5)

Due to the rotational symmetry, the eigenstates (and eigenvalues) are labeled by the angular
momentum number m. Furthermore, we introduce the magnetic length lB =

√
~/eB and

the cyclotron energy ~ωc =
√

2~vF/lB to employ dimensionless units ρ = r/lB and ετ =
Eτ,s/~ωc. The application of the IMBC (2) at the boundary r = R with nr = (cosφ, sinφ)
yields for the dispersive states with nτ = ε2τ + (τ cos 2ϕ− 1)/2

0 =


− cos2 ϕρ2L−m+1

n+−1 (ρ2) + sin2 ϕ(n+ + 1)L−m−1
n++1 (ρ2)− ε+ρL

−m
n+ (ρ)

∣∣∣∣
ρ=R/

√
2lB

if τ = 1

cos2 ϕ(n− + 1)L−m−1
n−+1 (ρ2)− sin2 ϕρ2L−m+1

n−−1 (ρ2)− ε−ρL−mn− (ρ)
∣∣∣∣
ρ=R/

√
2lB

if τ = −1
,

(6)

where the zeros of these equations determine the energy eigenvalues Eτ,snρ,m around τ = ±
with nρ = 1, 2, 3. . . as the radial quantum number. For α = 0, Eq. (6) reduces to the
conditional equation previously derived for graphene by replacing m→ m− 1 [71–73]. The
flat-band states trivially fulfill the boundary condition and persist unperturbed.
The analytical results for the magnetic field dependence of the energy eigenvalues of

Dirac-Weyl quasiparticles in isolated dots are presented in Fig. 2 of article I for several α
values. Let us briefly summarize the main results of energy eigenvalues in the continuum
approximation. As reported in Refs. [71–73] for α = 0, the spectra is particle-hole anti-
symmetric and Eτ = E−τ for B > 0. For intermediate scaling parameters (0 < α < 1), we
find a valley-anisotropy spectrum, i.e., Eτ 6= −E−τ when B > 0 due to the broken inversion
and time-reversal symmetry. In the dice lattice (α = 1), the spectra are valley-degenerate
for any B. Additionally, we have a four-fold degeneracy since Em = E−m when B = 0.
Interestingly, the flat-band states are unperturbed by the IMBC and the time-reversal
symmetry breaking due to the magnetic field since the anti-PT symmetry is intact [29].
As detailedly derived in article I, the eigenvalues in the limit of large ρ, i.e., large radii or
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1 Summary

Fig. 4: Conductance of the con-
tacted 1/

√
3-T3 quantum dot with

B = 2 T and ∆lead = 0.2 eV. Blue
[red] lines mark the analytical solu-
tion for τ = +1 [τ = −1], respectively.
For details, see article I. Adapted
from article I.
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magnetic fields, converge to the Landau levels (LLs) of the α-T3 lattice [33],

Eτ,s,nτ = ~ωc
√
nτ + 1

2(1− τ cos 2ϕ), (7)

as expected. Note that the prominent valley-degeneracy present in graphene is lifted for
intermediate scaling parameters (0 < α < 1) due to the α-dependent Berry phase [33].

Numerical verification We model the quantum dot of Fig. 2(a) by the tight-binding
model

Hdot =Hα + ∆
∑

i∈stripe

(
a†iai − b

†
ibi + c†ici

)
+ ∆lead

∑
i∈lead

(
a†iai − b

†
ibi + c†ici

)
, (8)

where Hα describes the Hamiltonian of the α-T3 lattice from Eq. (1) in the magnetic field
B via the Peierls substitution, Jij = J exp{iΦij}, with Φij = 2π/Φ0

∫ j
i A(r) dr. The sums

in the sublattice-dependent on-site potentials ∆ and ∆lead are taken over the sheath (white)
and lead (blue) parts of width W denoted in Fig. 2(a), respectively, which implement the
IMBC by opening a gap of 2∆ in the band structure at the charge neutrality point. To
accurately implement the IMBC, we have to approximate the infinite region of infinite mass
in Eq. (3) with a finite W and ∆ in the numerical implementation of the IMBC region
[cf. Fig. 3(a)]. We take W = 5 nm to accurately represent a continuum outside the dot
region. Throughout this work, we assume ∆ > 0 since the ∆ < 0 case can be obtained by
reversing the sign of the energy. Note, that the on-site potential also shifts the flat band to
the bottom of the conduction band, E = ∆, in the sheath region.
Before comparing the full B-dependence of the isolated dot to the continuum solution,

we perform a convergence check by obtaining the density of states (DOS) via the kernel
polynomial method [74] of the isolated 1/

√
3-T3 lattice quantum dot, i.e. ∆lead = ∆

(disconnected leads), as a function of ∆ [cf. Fig. 2(b)] at fixed B = 2 T. For very small ∆,
the finite sheath region around the dot does not act as IMBC, because ∆ < E. Recalling
the derivation of the IMBC in article I, the wave function outside the dot region decays
exponentially perpendicular to the boundary when ∆>E, i.e., ψII ∝ exp(−k⊥r) for r > R.
Since stripe W is finite (W = 5 nm) in the numerical tight-binding model, convergence to
the continuum eigenvalues cannot be reached when the wave function is not sufficiently
decayed due to too small ∆. Above a threshold ∆ & 0.75 eV, the DOS peaks match
the continuum solution, especially for E < 0. Therefore we take ∆ = 0.8 eV throughout.
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1.2 Dirac-Weyl quasiparticles in magnetic fields

The results depend on the choice W : a larger width W could allow for smaller ∆ but
increases the computational demand. For positive energies, we notice an additional band of
states emerging from the flat band. We will show below, that these are edge states at the
infinite-mass boundary.
In the following, we exemplarily examine and compare the DOS with the analytical

eigenvalue spectra in Fig. 3, where we take ∆ = 0.8 eV. Clearly, the continuum model yields
an extremely accurate approximation of the numerical data for E < 0. More DOS values
develop for E < 0 because the tight-binding model inherently involves additional, larger
angular momenta than those considered in the continuum eigenvalues spectrum. Drastic
differences appear however for positive energies (and α > 0), where we observe a band of
additional states that are related to the on-site potential ∆ and are located at the boundary
of the dot [see below]. As detailedly shown in article I, these observations are valid for any
α > 0; the band of states is absent in graphene dots, and its width scales with α.
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Fig. 5: LDOS of the contacted 1/
√

3-T3 dot at energies marked by (1) and (2) in Fig. 4 in (a) and
(b), respectively. The dashed line denotes the boundary of the quantum dot. Adapted from article I.

A perhaps more realistic situation is an open dot geometry, i.e., connecting leads to
the dot region[see Fig. 2(a)]. To (partially) restore the rotational symmetry, we add lead
barriers of ∆lead = 0.2 eV [cf. Fig. 2(a) blue region]. In the Landauer-Büttiker formalism,
we obtain the differential conductance G and the local DOS (LDOS) by the python-based
toolbox kwant library [70]. For numerical details on the taken parameters and quantities, see
Sec. 3.2 of article I. The conductance is proportional to the transmission and probes the extended,
i.e., current-carrying states inside the dot. In Fig. 4, the conductance calculations are shown for
a weak magnetic field of B = 2 T. For verification of the large-field case, see the discussion on
Fig. 5 and Fig. 7 in article I. Again, we can accurately assign the resonances of the conductance to
the analytical eigenvalues of the isolated dot for E < 0 as in Fig. 3(b), while we notice additional
peaks in the positive energy range. The flat band with vanishing group velocity is absent in the
conductance [cf. Fig. 4] because it does not carry any current.

We investigate these different transport channels by examining the spatial distribution of the
LDOS for resonance (1) and (2) [see Fig. 5(a) and (b)] in the dot region. The LDOS of resonance (1)
is a (nearly) rotational-symmetric bulk state corresponding to the analytical solution with quantum
numbers m = 0, snρ = −1, and τ = −1. This is in agreement with the corresponding eigenfunction
[see Eq. (4)]. For resonance (2), the situation is much different. Here, the incoming electrons are
mainly transmitted along the boundary of the dot, which is not related to any bulk states from the
IMBC. The origin of these “anomalous” edge states lies in the two regions of different flat-band
positions: inside the dot region, the flat band is located at E = 0, while it is located at E = ∆
outside the dot [75]

A short note on the use of the lead barrier: As demonstrated in Fig. 7 of article I, several
conductance resonances are smeared out into hybridized bands and cannot be identified with the
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Fig. 6: (a) Conductance for the resonances (1) [black curves] and (2) [blue curves] as a function of
disorder strength ∆̂ for three (typical) realizations. All other parameters remain as in Fig. 2. (b)(c)
LDOS of the disordered 1/

√
3-T3 quantum dot for the (shifted) energy (2) in Fig. 4 at disorder

strength ∆̂ = 0.8t. Adapted and extended from article I.

analytical solutions when ∆Lead = 0 because the attached leads break the rotational symmetry.
Although ∆Lead 6= 0 but ∆ � ∆Lead leads to only evanescent waves entering the quantum-dot
region and suppressing the conductance resonances when E < ∆Lead, but the rotational symmetry
is (partially) restored and the conductance resonances are assignable to their quantum numbers.

Moreover, we demonstrated in Fig. 5 and Fig. 7 of article I that the DOS and the conductance
are quantized in steps of the Landau levels for large magnetic fields for every α, as predicted. The
quantized quantum Hall plateaus will collapse, however, when the cyclotron diameter dc = 2|E|/vFeB
exceeds the lead width lW because the electrons—moving in skipping orbits along the boundary–
will pass over the right lead.

Lastly, we introduce imperfections to the IMBC by randomizing ∆→ ∆i in Eq. (8) where ∆i is
assumed to be evenly distributed in the interval [∆− ∆̂, ∆ + ∆̂] and ∆ > ∆̂ such that ∆̂ gives the
disorder strength. Figure 6 depicts the conductance of the (shifted) resonances (1) and (2) while
continuously increasing ∆̂ = 0→ 0.8 for three (typical) disorder realizations. The local imperfections
of the IMBC shift the resonance position due to the large local differences in the on-site energies,
which modify the effective radius of the dot and the width of the sheath. While the transmission of
the bulk state resonance (1) is only marginally affected by the edge disorder, scattering along the
boundary notably reduces the conductance of the “edge state” (2). When ∆̂→ 0.8t, however, the
conductance can be (partially) restored, which correlates with the local distribution of the LDOS on
the dot boundary. In this case, the LDOS is spread on both (top and bottom) half of the dot [cf.
Fig. 6(b) and Fig. 6(c)] and G/G0 > 0.5. When G/G0 < 0.5, only the top or bottom half of the dot
boundary is populated [cf. Fig. 9 in article I]. This suggests that each half of the dot supports half
of a transport channel. The disordered IMBC facilitates electron puddles on the boundary, which
reduces the conductance by trapping the traversing electrons [cf. Fig. 6(b) and (c)]. It would be
promising for future works to obtain the probability distributions for the LDOS and conductance
from an ensemble of disorder realizations to pinpoint these observations.

In summary, we found good agreement between the analytical spectrum obtained by the IMBC
and the numerical implementation on the α-T3 lattice in open and closed setups. However, deviations
of the numerical results occurred for energies far away from the neutrality point and for positive
energies due to lattice effects. Furthermore, the valley-anisotropic properties of the Dirac-Weyl
quasiparticles under external magnetic fields suggest that α-T3 lattices are promising candidates for
valleytronic applications.
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1.3 Dirac-Weyl quasiparticles in strain fields

1.3 Dirac-Weyl quasiparticles in strain fields
Deformations of α-T3 lattice by strain fields u(x, y, t) = [ux, uy, uz ≡ h(x, y, t)] modify the site
positions r′i(t) = ri+u(r) of the α-T3 lattice and, thereby, alter the bond lengths dij(t) = |r′i(t)−r′j(t)|
between nearest neighbors and changes the overlap of the π-orbitals, which is estimated by [76]

Jij(t) = J exp{−β(dij(t)/a− 1)}, (9)

where β = −∂ ln J/∂ ln a is the electron Grüneisen parameter. The effects of such deformations
on the electronic properties of graphene (α = 0 limit) are described in terms of valley-dependent
pseudo-gauge fields [77]. The associated pseudomagnetic field (PMF) has been exploited to spatially
divide electrons from the K and K′ valleys in order to generate valley-polarized currents [59]. These
properties motivated us to study the interplay of the valley-contrasting Dirac-Weyl quasiparticles
in α-T3 lattices with strain-induced pseudo-gauge fields which could offer a pathway towards new
valleytronic applications. We start by showing that strain induces pseudo-gauge fields for Dirac-
Weyl quasiparticles in the more general case of α-T3 lattices and derive the pseudo-Landau levels
(pseudo-LL) for a simple static strain.

Fig. 7: (a) Hall-bar setup with four terminals based on the α-T3 lattice with a static/dynamic
Gaussian bump (17) at the center. Leads attached to the Hall-bar region are described by the
pristine tight-binding Hamiltonian in Eq. (1) with Jij = J = 2.8 eV. (b) Fourier components of
the time-dependent transfer amplitudes for realistic values of zij and m = 0, 1, 2. The transfer
amplitude of the static bump is also shown. Adapted from article III.

Pseudo-electromagnetic fields Within the Cauchy-Born approximation and since real de-
formations do not involve rigid-body rotations, the strained nearest-neighbor vectors are given
by [77, 78]

δ′A/B ,i = δA/B ,i + ε · δA/B ,i, (10)

where

(ε)ij = (∂iuj + ∂jui)
2 + (∂ih)(∂jh), i, j = x, y (11)

is the strain tensor and the vectors δA/B ,i are defined in article II. For small strains, we expand the
strained transfer-amplitudes up to linear order in ε since the tight-binding model (1) depend solely
on the nearest-neighbor distances:

Jij = J exp{−β(|δA/B ,i + ε · δA/B ,i|/a− 1)} ≈ J(1− β

a2 δA/B ,i ε δA/B ,i). (12)

After inserting this expression in the Fourier-transformed Hamiltonian in Eq. (1) of article II, we
find around K and K′:

Hϕ
τ = ~vFSϕτ ·

(
q + τ

e

~
Aps

)
, (13)

9
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with vF = 3at/2~, q = −i∇, and

Aps = −~β
2a

(
εxx − εyy
−2εxy

)
(14)

is the strain-induced vector potential. At first sight, the q-space Hamiltonian in Eq. (13) appears
to be formally equivalent to the Dirac-Weyl quasiparticles coupled to an external magnetic field,
see Eq. (19) in article I. However, this strain-induced vector potential is not equivalent to a real
vector potential associated with an electromagnetic field since it explicitly depends on the valley
quantum number τ . This crucial difference arises, because strain fields are, unlike real magnetic fields,
time-reversal symmetric. Consequently, the artificial (pseudo-) gauge field induces pseudomagnetic
and pseudoelectric fields (PMFs and PEFs):

Bps = (∇×Aps)z , Eps = − ∂

∂t
Aps. (15)

The main influence of PMFs can be obtained by considering a spatially uniform PMF with corre-
sponding pseudo-gauge field Aps = −τγBpsyex due to a static triaxial strain [79] and deriving the
pseudo-LL, focusing on the scaling parameter α, field direction γ = ±1 and the valley number τ .
This yields (for details, see Eq. (13) in article II) [80]

Eτ,γ = ±~ωc
√
n+ 1

2(1 + γ cos(2ϕ)) . (16)

In comparison to the LL from Eq. (7) induced by a real magnetic field, the sign γ in Eq. (16) takes
over the role of the valley quantum number, i.e., γ = −τ , which makes the pseudo-LL in Eq. (16)
valley-degenerate as a consequence of the time-reversal symmetry. The flat band of the α-T3 lattice
remains unperturbed for any strain configuration, just as the LL from magnetic fields.

Fig. 8: (a) Pseudo-LL as a function of scaling parameter α for n = 0, 1, 2 and γ = ±1. (b) (Zoomed-
in) Pseudomagnetic field induced by static Gaussian bump with h0 = 17.9 nm and σ = 20 nm
centered in a Hall bar of width W = 50 nm for electrons around the K-valley. (Zoomed-in)
Pseudoelectric field induced by an oscillating Gaussian bump centered in a Hall bar setup [see
Fig. 7(a)] of width W = 20 nm with h0 = 8 nm, σ = 10 nm, and Ω = 0.25 J at t = T/8 for electrons
in the K-valley. The pseudoelectromagnetic fields for electrons residing in the K′ valley are obtained
by reversing the signs. Figure (b) and (c) are modified from article III

Setup Out-of-plane deformations like Gaussian bumps or folds are particularly interesting because
valleytronic devices such as valley filters or beam splitters can be constructed by utilizing the valley-
dependent pseudoelectromagnetic fields [56, 57, 61, 62, 79]. Here, we consider static (Ωt = 0) or
dynamic Gaussian bumps u = h(r, t)ez of height h0 and width σ on the α-T3 lattice displayed in
Fig. 7(a) with

h(r, t) = h0 cos (Ωt) exp
(
−r2/σ2), (17)

where T is the oscillation period, i.e. h(r, t+T ) = h(r, t), and Ω = 2π/T the corresponding frequency.
This deformation induces a pseudoelectromagnetic vector potential Aps = (ReAps, ImAps) given

10



1.3 Dirac-Weyl quasiparticles in strain fields

by [81–83]

Aps = 1
evF

3∑
j=1

Jij(t)e−iK·(r′
i−r′

j), (18)

where K is a corner of the Brillouin zone. For the analytical PMF, see Eq. (17) in article II .
Figure 8(a) and (b) display the local course of the PMF and PEF, which were obtained by Eq. (15)
for electrons located in the K-valley. For K′, the PMF and PEF are obtained by reversing the
signs. We briefly outline how this could potentially valley-filter incoming electrons [see Fig. 8(b)]
in the four-terminal Hall-bar setup shown in Fig. 7(a). Injected valley-degenerate electrons from
the left lead [cf. Fig. 7(a)] feel the opposite PMF, which pushes the K electrons to the center
of the Gaussian bump while the K′ electrons—feeling the reversed PMF—are scattered in the
perpendicular direction and are collected by the leads at the top and bottom [59]. Hence, the
outgoing stream of electrons at the right lead is effectively valley-filtered, as we will show below. To
probe the valleytronic properties, we take the left (L) and right (R) lead in zigzag orientation since
the K and K′ valley can be identified with negative and positive momenta in this case, respectively.

Note that the valley selection does not depend on exciting valley-polarized states inside the
Gaussian bump since the pseudo-LLs (16) are degenerate in the valley degree of freedom τ . Instead,
the symmetry-breaking of the incoming electron stream from the left lead selects the K-valley. An
incoming valley-degenerate current from the top or bottom lead will be split into three streams of
valley-polarized electrons, which would require a different lead setup for detection [84, 85].

Valley-polarized current generation by static Gaussian bumps We now turn to
α-T3 quantum dots inscribed by static Gaussian bumps (17) [Ωt = 0] and focus on the transport
properties and the requirements for the valley-polarized current generation in a four-terminal Hall bar
setup with W = 50 nm. We inspect the conductance G proportional to the transmission and valley
polarization τ [K] = G[K]/G between the left (L) and right lead (R) [cf. Fig. 7(a)[(b)]] obtained using
the kwant library [70] based on the tight-binding model (1) for geometric parameters. The transfer
amplitudes are given in Fig. 7(b) as a function of the squared nearest-neighbor distances, see Eq.(4)
in article III. We define the valley polarization as the probability of an injected, valley-degenerate
electron in the left lead to be transferred into any mode belonging to the K valley in the right
lead weighted by the total conductance. Further insight into excited states inside the quantum dot
is gained by the spatial distribution of the local density of states (LDOS). For further numerical
details, refer to article II.

We assess the valley-polarization properties of the strain-induced quantum dots by studying
three representative configurations of the Gaussian bump corresponding to low, high, or medium
PMF inside the Hall bar region. We take (h0, σ) = (5, 20) nm, (h0, σ) = (17.9, 16) nm, and
(h0, σ) = (17.9, 20) nm belonging, respectively, to the regime I, II, and III of Fig. 3(a) in article II.
For regime I, we observe a finite conductance above a small gap of around EF ' 0.04 eV due to the
barrier induced by the small PMF for combination (h0, σ) = (5, 20) nm. For larger energies, the
conductance is (nearly) unperturbed and much higher compared to regimes II and III due to the
weak field. Nevertheless, valley filtering is possible in a small window around EF = 0.1 eV. Beyond
this point, the valley polarization decays to τK ' 0.5 because the weak PMF is unable to divert the
K′ electrons from the right lead [cf. Fig. 9(b)]. For the combination of (h0, σ) = (17.9, 16) nm, we
observe that the conductance is significantly suppressed compared to the previous case [cf. Fig. 9(a)],
because most electrons traversing by the Gaussian bump are blocked due to the exceedingly high
PMF. However, a small amount of K′ electrons is still able to circumvent the repulsive PMF barrier
and pass to the right lead, thereby inducing a τ [K′] polarization [cf. Fig. 9(b)].

We now turn to the valley-filtering regime III of the parameter space [see Fig. 3(a) of article II],
where we take h0 = 17.9 nm with σ = 20 nm. Here, the system shows only a finite conductance
above EF ' 0.15 eV, i.e., when the (Fermi) energy exceeds the effective barrier from the high PMF
inside the quantum dot region [cf. Fig. 9(a)]. Beyond this threshold EF ' 0.15 eV, we find a band
of resonances between (1) and (2) [grey dots], and around (3), where each band displays nearly
perfect valley polarization. Here, incoming electrons are excited to pseudo-LL subbands of different
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Fig. 9: (a)[(b)] Conductance [valley polarization] in dependence of the Fermi energy EF for a
strained 1/

√
3-T3 lattice Hall bar with W = 50 nm and different (h0, σ) combinations given in the

legend. The gray circles denote peaks in the conductance at energies En for h0, σ = (17.9, 20) nm.
The inset shows the peak energies En of (a) as a function of resonance index with a linear fit
En = E0 + ∆Enn with E0 = 0.1911 eV and ∆En = 0.0055 eV. For the marked resonances (1) at
E0 = 0.191 eV , (2) at E5 = 0.219 eV, and (3) at EF = 0.387 eV, we find τ [K] = 0.88, τ [K] = 0.86,
and τ [K] = 0.76, respectively. (c)-(e) Zoomed-in LDOS at resonance (1),(2), and (3). Figure altered
from article II.

Bps-values with γ = −1 and γ = +1, respectively. By inspecting the inset in Fig. 9(a), we notice
that the resonances energies [grey dots] En for γ = −1 between (1) and (2) [cf. Fig. 9(a)] are
equidistant in the index n with spacing ∆En = 5.5 meV, and we find En ∝ n ∝

√
Bps,n. This

observation is consistent with the analysis conducted in Ref. [86], where the authors predicted an
(approximately) linear relationship between the pseudo-LL subbands by the number n of iso-field
orbits that surround an integer magnetic flux. For higher energies, the valley polarization tends
to diminish because the cyclotron diameter (dc = 2|EF|/vFeBps) grows linearly, which shrinks the
effective width of the bump [59]. To better characterize the various pseudo-LL subbands, we analyze
the spatial distribution of LDOS in the quantum dot region. For the LDOS of resonances (1) [(2)]
in Fig. 9(c)[(d)], we observe threefold-symmetric ∇-like patterns with a large [small] ’petal’ radius,
which corresponds to the iso-field orbits with small [large] Bps. The petals of (1)/(2) [(3)] coincide
with the γ = −1 [γ = +1] regions of the PMF [cf. Fig. 8(b)]. Note that the resonances (1),(2), and
(3) are characteristic of the whole band of resonances. Furthermore, the ∇ and ∆ shapes exhibit a
sublattice polarization, i.e. only the A-B or B-C sublattices are, respectively, occupied. In fact, any
0 < α < 1 breaks the A and C sublattices in the α-T3 lattice, which splits the pseudo-LL bands of
γ = ∓1, thereby reducing the rotational symmetry of the LDOS pattern from sixfold to threefold
and inducing an energy gap between γ = −1 and γ = +1 states. As can be seen for the dice-lattice
case [α = 1] in Fig. 4(b) from article II, the conductance reveals only a single band of resonances
that are equidistantly spaced and nearly perfectly valley-polarized while the sixfold-symmetry of
the LDOS is restored [cf. Fig. 4(e) and (f) in article II]. In the graphene-limit (α = 0), a similar
sixfold-symmetric ’flower’ pattern has also been reported [56, 57]. As shown in detail in Fig. 4(g)
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1.3 Dirac-Weyl quasiparticles in strain fields

and Fig. 4(h) of article II, the local current densities of resonance (1) and (3), made of electrons
belonging to the K valley, are trapped inside the bump in long-living resonant states orbiting the
∇ (γ = −1) and ∆ (γ = +1) regions of the PMF before being transmitted into lead R along the
zero-field lines of the PMF, while the unpolarized current is effectively collected by the perpendicular
leads.

0.0 0.2 0.4 0.6 0.8 1.0
α

0.0

0.1

0.2

0.3

0.4

0.5

E
F

[e
V

]

(a)

−25 0 25

y [nm]

−25

0

25

y
[n

m
]

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
G [G0]

0 0.125 0.25
LDOS

Fig. 10: (a) Contour plot of the conductance as function of α and EF. The Pseudo-LLs from
Eq. (16) are shown for n = 0 and Bps ∈ [100, 200] T for γ = −1 (magenta) and γ = +1 (yellow).
(b) (Zoomed-in) LDOS at EF=0.335 eV and α = 0.95. Figure adapted from article II

Figure 10(a) displays the full EF-α-dependence of the conductance as a contour plot. We add
the pseudo-LL of Eq. (16) for n = 0 and γ = ±1 with Bps ∈ [100, 200] T as a guide to the eye.
When α > 0.85, we observe overlapping pseudo-LL subbands [see also Fig. 5.(b) of article II]. At
these crossing points, the corresponding LDOS reveals a ’flower’-like pattern consisting of ∇- and
∆-shapes with different petal sizes [cf. Fig. 10(b)] because pseudo-LL subbands can only cross for
unequal Bps-values. Note that the observed LDOS pattern remains threefold-symmetric due to the
different radii of the ∇ and ∆ ’petals’.

Valley-polarized current generation by dynamic Gaussian bumps Now, we time-
periodically drive the height of the Gaussian bump, which induces an additional valley-dependent
PEF [Fig. 8(d)]. This allows us to assess the valley-filter capabilities of crossed pseudoelectromagnetic
fields and demonstrate the tunability of such setups by analyzing the steady-state transport properties
in the four-terminal setup using Floquet theory. Below we will demonstrate, that the time-periodical
drive gives us an additional ’knob’ to tune the valley filtering.

Let us first give a brief overview of the non-equilibrium Floquet-Green’s function formalism and
transport quantities. The DC transmission between the left (L) and right lead (R) through our
device is then obtained in the Keldysh non-equilibrium Green’s function approach by

T (E) =
∑
k∈Z

Tr
[
Grk0ΓL

00G
a
0kΓR

kk

]
, (19)

where the retarded (advanced) Green’s function in Floquet basis is denoted by Gr(a)
k0 . The level-width

function of the left (right) lead is simply the level-width function of the undriven lead shifted by
2kΩ. For the Floquet representation, we write ΓL(R)

kk = i[Σr
L(R) − (Σr

L(R))†]kk, where Σr
L(R) is the

respective self-energy in Floquet representation, i.e., (ΣrL(R))km = δkmΣrL(R)(E + 2kΩ) and k is the
sideband index. Here, the frequency 2kΩ enters the Floquet equations, because the Hamiltonian
H(α)(t) has an oscillation period of T/2 (frequency of 2Ω) since Eq. (9) admits h(r, t)2. The retarded

13



1 Summary

Floquet-Green’s function Grmn is defined by [87]∑
m∈Z

[
(E + 2kΩ)δkm −H(k−m)

α − (Σr)km
]
Grmn(E)

= δkn, (20)

where (Σr)km denotes the sum over the four lead self-energies in Floquet representation. The
Hamiltonians H(m)

α are the Fourier coefficients of the series Hα(t) =
∑
m
ei2mΩtH

(m)
α , which are

given in Eq. (8) in article III. The Fourier-transformed transfer amplitudes given by Eq. (9) of
article III are exemplarily shown in Fig. (7) for m = 0, 1, 2 as a function of the height differences
between nearest neighbors up to the maximal sustainable elastic strain of graphene, zij = 0.5625,
corresponding to 25% of the bond-length change [50]. In Floquet space, the transfer amplitudes of
the on-diagonal Hamiltonian H(m=0) are decreased in comparison to the static transfer amplitudes
due to time-averaging [cf. Fig. 7(b)]. Furthermore, the off-diagonal part H(m 6=0) depends crucially
on zij ∝ h2

0 and decreases exponentially with m for constant zij . Due to the time-reversal symmetry,
we have H(m) = H(−m). Since the valleys are separated in momentum space for zigzag edges, we

0.0 0.5 1.0 1.5 2.0

E [eV]

0

2

4

6

T

(1)
(1′)

(a)

0.0 0.5 1.0 1.5 2.0

E [eV]

0.00

0.25

0.50

0.75

1.00

τ
[K

]

(1) (1′)(b) (h0, σ)/nm

(4, 10)

(8, 6)

(8,10)

Ω 2Ω 3Ω Ω 2Ω 3Ω

Fig. 11: (a)[(b)] Transmission [valley polarization] as a function of (quasi-) energy for an oscillating
Gaussian bump with frequency Ω = 0.25J in a 1/

√
3-T3 lattice Hall bar with W = 20 nm and

different (h0, σ) combinations given in the legend. For both the resonance (1) (1’) at E ' 1.31 eV
and E ' 1.49 eV, we find τ [K] = 0.75. The figure is adapted from article III.

have ΣrR = Σr,[K]
R + Σr,[K

′]
R , which allows us to single-out a valley-index in the transmission,

T [K](E) =
∑
k∈Z

Tr
[
Grk0ΓL00G

a
0kΓR,[K]

kk

]
. (21)

Further information on excited states inside the setup is obtained by the spatial distribution of the
time-averaged local density of states (LDOS), which is defined on site i in Floquet basis by

T-LDOS(E)i = − 1
π
Im (Gr00)i,i (E). (22)

By the Floquet-Green’s function algorithm, we also have access to the spatially resolved current
density between site i and site j at a (quasi-) energy E [88],

Iij(E) =
∑
k∈Z

J
(k)
ij

[
G<0k

]
ij

(E), (23)

where the [G<0k]
ij

(E) is obtained by the Keldysh equation (16) in article III. In numerical practice,
after truncating the infinite sum in Eq. (20) at m ∈ [−M,M ], we solved Eq. (20) with a recursive
Floquet-Green’s function algorithm [88, 89] by dividing the setup in circular slices[90]. The full
numerical details and definitions are found in Sec. II in article III.

In the following, we only consider driving frequencies below the bandwidth since the effective
Hamiltonian in the (high-frequency) off-resonant limit obtained by the Floquet-Magnus expansion
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Fig. 12: (a)-(d) Time-averaged LDOS at E = Ω, resonance (1), E = 2Ω, and resonance (1’),
respectively. The figure is adapted from article III.

is simply the time-averaged Hamiltonian (up to order Ω−2) because elastic strain conserves time-
reversal symmetry, see discussion in article III [91]. Therefore, we exemplarily take Ω = 0.25 J , then
taking M = 5 and J (m)

ij up to m = 3 guarantee convergence in the truncation of the Floquet-Green’s
function.

We start the discussion on the Floquet-transport properties of dynamically strained quantum
dots by examining the transmission [cf. Fig. 11(a)] and valley polarization [cf. Fig. 11(b)] for small,
large, and medium pseudoelectromagnetic fields on the intermediate 1/

√
3-T3 lattice. In view of the

static results, we first examine (h0, σ) = (8, 10) nm [medium PMF and PEF] because the expected
τ [K] is large. Indeed, we notice three characteristic transport regimes for valley-filtering that are
emerging due to the time-dependent strain: (i) E < Ω, (ii) E ' Ω, and (iii) E ' 2Ω. The regime (i)
is reminiscent of the static case: We find a threshold energy of E ' 0.2 eV [cf. Fig. 11(a)] below
which the oscillating Gaussian bump blocks any current. Above this energy, we observe transmission
resonances with a (threefold-symmetric) ’flower’-like LDOS patterns due to the broken inversion
symmetry and greatly increased valley polarization (see Fig. 9 and the discussion). Approaching
regime (ii), the valley polarization deteriorates since higher bands are populated and the cyclotron
diameter, dc ∝ E, grows, thereby effectively shrinking the width of the Gaussian bump [59]. Right
below E = Ω, the transmission actually decreases because the Floquet drive induces a gap at the
zone boundary. In fact, we showed in article III that this α-dependent gap vanishes [is maximized]
when α = 1 [α = 0]. At the m = 0 and m = 1 zone boundary where E = Ω however, we observe a
sudden onset of a valley-polarization plateau [cf. Fig. 11(b)], which is in stark contrast to the static
case [cf. Fig. 9(a)]. The regime (iii) about E ' 2Ω features a symmetric transmission gap of size
δ = 0.19 eV due to the hybridization of the flat band of the m = 1 particle-hole symmetric Floquet
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Fig. 13: Logarithmic transmission (a) and valley polarization (b) as a function of (quasi-) energy
and scaling parameter α for h0 = 8 nm, σ = 10 nm, and Ω=0.25J .

sideband with the central m = 0 band via the off-diagonal H(1) term. Exactly at E = 2Ω, the setup
blocks any current between the left and right lead, i.e. T (2Ω) = 0, due to the zero group velocity of
flat-band states. Actually, we showed that the oscillating bump completely blocks any current in
the setup by inspecting the transmission into the other leads [not shown]. At the edges of this gap,
we find new valley-polarized transmission resonances at (1) and (1’) which are related to the PEF
(see below). By reducing the amplitude to h0 = 4 nm, we decrease the pseudo-gauge field (18) by
decreasing zij which is proportional to h2

0 [see Eq. (4) of article III]. Thereby, the electrons flowing
from the left lead to the right lead are transmitted with decreased scattering. At E = 2Ω however,
the transmission vanishes again despite the reduced Floquet-sideband coupling J (m)

ij . Furthermore,
we showed in article III that the valley-polarized plateau in regime (ii) and the resonant states in
(iii) persist for 6 . h0/nm . 10. However, the position of the resonant states in the regime (iii)
scale approximately linearly with h0 [see Fig. 5 in article III]. When (h0, σ) = (8, 6) nm, we notice
that the transport between the lead L and R is almost completely blocked due to the large PMF
and PEF field. Nevertheless, a small amount of K′ electrons is able to pass by the Gaussian bump,
similar to the static case.

Figure 13 demonstrates the α-dependency of the valley-filtering regimes (i-iii) of the oscillating
Gaussian bump. The static-like regime (i) [E < ω ] has a finite transmission for small energies near
E = 0 around α & 0 due to the zigzag edge states of graphene. Approaching E . Ω, we notice
a gap in the transmission related to the drive of the oscillating bump. The regime (ii) shows a
(nearly) vanishing transmission up until α ' 1/

√
2(' 0.707). In Fig. 13(b), this becomes especially

apparent: Here, the valley-polarized plateau merges with the static-like regime (i). The transition
near α ' 1/

√
2 coincides with the value of the scaling parameter in the topological phase transition

of the irradiated α-T3 lattice in the off-resonant limit, where the Chern number of the valence or
conduction band takes C = ±2 instead of C = ±1. The critical scaling parameter α = 1/

√
2 marks

the (soft) boundary above which the dynamics of the charge carriers are dominated by pseudospin-1
characteristics instead of the pseudospin-1/2 one. When α > 0, the transmission vanishes at E = 2Ω
[regime (iii)], and the gap scales linearly with the scaling parameter.

To characterize the different transport channels for E = Ω, resonances (1) and (1’), and E = 2Ω,
we examine the T-LDOS shown in Fig. 12(a)-(d), respectively. Beginning at E = Ω, a threefold-
symmetric T-LDOS pattern emerges, mimicking the static-like overlapping ∇ and ∆ patterns of
different petal sizes observed in article II Fig. 5(c). However, the situation is much different at
E ' 1.31 eV [and E ' 1.49 eV] since the spatial distribution of the time-averaged LDOS has a large
amplitude at the center of the bump. Here, the PEF [see Fig. 7(b) and (d)] pushes the incoming
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Fig. 15: Contour plot of the valley
polarization as a function of (quasi-)
energy and frequency for an oscillating
Gaussian bump on the 1/

√
3-T3 lattice.

The Van Hove singularity at E = J
marks the upper limit for the definition
of the valley polarization. Dashed lines
denote E = mΩ, where m = 1, 2,
3 and 4, respectively. Adapted from
article III.

K-valley electrons towards the center, while the K′ electrons are blocked, creating an effective valley
polarization. The time-averaged LDOS at E = 2Ω depicts a flat-band state with a large degeneracy
confined to the Gaussian bump, which is unlike the flat band at E = 0 and is therefore induced by
the dynamical drive of the strain. [cf. colorbar in Fig. 12(c)]. This flat-band state is repeated at
E = 2mΩ with linearly decreasing spectral weight due to the weak off-diagonal H(m) Hamiltonian
[see above].

To give further insight into the different regimes, we look upon the local course of the time-
averaged current density in Fig. 14 for regimes (ii), resonance (1), and the flat band at E = 2Ω in
regime (iii) for α = 0, α = 1/

√
3, and the dice lattice [α = 1], respectively, where the direction of

the electron flow is depicted by the arrows and its magnitude by the blue intensity plot. For regime
(ii), we notice that the majority of the incoming electron flow is located near the lobes of PMF,
resembling the static motion [cf. Fig. 4(i)(j) of article II] which is however distorted by the PEF. At
the resonance (1), the PEF focuses K electrons through the quantum-dot region along the x-axis
[cf. Fig. 8(c)] while the K′ electrons exit the setup by the perpendicular leads [cf. Fig. 14(b)]. The
flat-band state shows a large trapped current inside the Gaussian bump [cf. Fig. 14(c)], emphasizing
the localized nature of this state.

To avoid the rapidly increasing Floquet-space dimensions, we have only considered a rather large
frequency of Ω = 0.25 J so far, which coincides with an oscillating frequency of 170 THz. Therefore
we show in Fig. 15 the valley polarization frequency dependence of the valley-filtering regimes up
to Ω = 0.05 J [34 THz]. Clearly, the regimes (ii) and (iii) endure frequencies down to at least
Ω = 0.1 J of the dynamical strain until the gap ∆ is outside the first Floquet zone, i.e. δ = 2Ω.
The valley-filtering capabilities of regime (i) depreciate through the overlap with regime (ii) below
Ω = 0.2 J .

To sum up, we have demonstrated that out-of-plane deformations have several advantages for the
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1 Summary

generation of valley-polarized currents in α-T3 lattices. By exciting different pseudo-LL subbands
due to the inhomogeneous PMF, a sublattice filter to access pseudospin-1/2 subspace is feasible by
breaking the inversion-symmetry for any 0 < α < 1. Furthermore, the regions of valley-polarized
and unpolarized transport of the α-T3 lattice in the (h0, σ) parameter space are notably sharpened
compared to similar graphene configurations. However, the main disadvantage of this configuration
is the small energy range in which valley-polarized currents can be generated. We have also shown
that a time-periodic driving of the height of the Gaussian bump is able to induce novel valley-filtering
regimes by the additional PEF. For certain parameters of bump and in dependence of the scaling
parameter α, we found a plateau in the valley polarization at the first Floquet-zone boundary E = Ω
and valley-polarized resonances near the center of the first Floquet zone E = 2Ω. The filtering
regimes can be tuned through the energy range by varying the driving frequency.

1.4 Conclusions
In this thesis, we have considered generalized Dirac-Weyl quasiparticles on α-T3 quantum dots in
external magnetic fields and in valley-dependent pseudoelectromagnetic fields induced by applied
out-of-plane strain.

Graphene and α-T3 nanostructures with various edge terminations and shapes have been studied
to modify their properties and band structure [65–68, 71, 72]. However, the infinite-mass boundary
condition [69] has not been previously considered in generalized α-T3 lattices. Given the resulting
valley-contrasting Landau level and the flat band around the Dirac nodes, it is natural to ask
about the effect of inhomogeneous strain-induced generate pseudomagnetic fields to manipulate the
valley-degree of freedom in the α-T3 lattice. This was first studied in our article II. Subsequently,
Ref. [80] derived the exact pseudo-LLs induced by non-uniform uniaxial and triaxial strains, where
the sublattice polarization of our results was confirmed. Dynamically straining graphene gives rise
to a pseudoelectric field, which has been widely explored for the valley-current generation [92, 93] or
valleytronic devices [85] in the adiabatic limit justified by the slow graphene oscillation frequencies
( 10 to 100 MHz) and the high carrier mobility (1 THz). In our approach, we have considered
larger, though somewhat unrealistic in solid-state systems, frequencies to enhance the pseudoelectric
field, providing a proof-of-principle that time-dependent strain induces and enhances valley-filtering.
Nevertheless, our setup should be engineerable in optical α-T3 lattices [33, 34] due to the high degree
of manipulability of the transfer amplitudes [94–96].

In article I, we have generalized the infinite-mass boundary to α-T3 lattices to study Dirac-Weyl
quasiparticles confined to quantum dots under external magnetic fields. Subsequently, we verified
the analytically derived valley-anisotropic eigenstates of the quantum dot by numerically solving
the tight-binding lattice-model in closed (isolated) and open (contacted) systems. We found good
agreement with the valley-anisotropic states in the negative energy range close to the neutrality
point. In the positive energy range, we found additional states located at the boundary connected to
the shifted flat band. By locally disordering the gap size outside the dot, we found the bulk states
to be less affected while the edge states were strongly perturbed. The flat band remains unaltered
under the boundary condition and external magnetic fields. The precise conditions for the existence
of boundary modes however remain an open problem for future works.

Motivated by the valley-contrasting properties of the Dirac-Weyl quasiparticles, we generalized
strain fields to α-T3 lattices in article II to modify the electronic properties by generating effective
pseudo-gauge fields with opposite signs in the K and K′ valley. We showed that the inhomogeneous
pseudomagnetic field generated by static Gaussian bumps placed at the center of a four-terminal
Hall bar device acts as a valley filter by causing and controlling valley-polarized currents in the
outgoing lead. We also classified and identified experimental realizable valley-filtering regimes based
on the height and width of the Gaussian bump. In addition, the Fermi energy played a central role:
the valley polarization is most dominant when incoming electrons are excited to pseudo-Landau level
subbands that are linked to different iso-field orbits encircling the lobes of the pseudomagnetic field.
These subbands are equidistantly spaced in the energy space. Furthermore, a finite α breaks the
inversion symmetry of the α-T3 lattice which splits the pseudo-Landau levels into sublattice-polarized
bands whose local density of states is localized at the negative or positive pseudomagnetic field
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1.4 Conclusions

regions. Thereby, an A-C sublattice filter is realizable.
To extend the valley-filtering capabilities, we have equipped the Gaussian bump with a time-

periodic drive in article III to induce a valley-dependent pseudoelectric field besides the pseudo-
magnetic field. We analyzed and assessed the steady-state transport properties of Gaussian bumps
centered in a four-terminal Hall bar setup by the valley-filtering efficiency and the spatial charge
and current densities obtained with a recursive Floquet-Green’s function algorithm. In addition
to the static regime for small energies, we identified two α-dependent dynamical valley-filtering
regimes caused by the periodic drive. Firstly, we found an additional valley-polarization plateau
at the Floquet-zone boundary between the central and first Floquet copy that also displayed a
“flower”-like pattern in the local density of states. Secondly, we detected a series of transmission gaps
at the center of every Floquet sideband 2mΩ related to the Floquet coupling of the flat band with
the central Floquet copy. Under certain strain parameters, a novel valley-filtering regime appears
near the transmission gaps where the incoming K electrons are focused through the bump by the
pseudoelectric field, instead of encircling the lobes of the pseudomagnetic field. A stability analysis
demonstrated that the polarization regimes are tunable by the driving frequency.

So far, the flat band has played a rather minor role because it persists under external fields and
does not directly affect the single-particle transport calculations due to the vanishing group velocity.
The effect of lattice modulations by, e.g., strains on the composition of the flat band in dice models
have not yet been studied, however. In principle, the flat band of the dice model is composed of
compact localized states (CLS) that have nonzero weight only inside a finite real-space region due
to the destructive interference responsible for localization [25, 97–99]. The set of all CLSs generated
by the lattice translations typically produces the basis of the flat band. However, it has been shown
that this set is linearly dependent in the dice model with periodic boundary conditions (real-space
torus) due to the band-crossings at the K and K′ points. This was attributed to an immovable
singularity in the Bloch wave function of the flat band in momentum space [99, 100]. Therefore, to
span the basis of the flat band, the so-called non-contractible loop states, which wrap around the
torus, have to be supplied [99, 101]. These states are extended along one spatial direction while
localized along the other direction and cannot be constructed via the CLSs. Recently, the maximum
Hilbert-Schmidt quantum distance near the band-crossing point has been proposed to evaluate its
singular nature [102], which leads to anomalous Landau levels [103] and boundary modes through
the bulk-interface correspondence [102] in systems with quadratic band-touching points. Besides the
fundamental interest, these so-called singular flat bands have recently attracted attention because
of potential applications in photonic lattices, such as distortion-free image transmission [104] and
slow-light propagation [105]. In article IV, we address this issue by studying the dice model under
a uniaxial strain along the zigzag orientation with a Haldane-type next-nearest neighbor (NNN)
interaction that breaks the time-reversal symmetry. Such a Haldane term is often studied in the
context of topological insulators as it realizes an anomalous quantum Hall effect on the dice [and
honeycomb] lattice with Chern number C = ±2 [C = ±1] [106, 107]. The uniaxial strain η breaks
the threefold rotational symmetry and trimerizes the model along the y-axis. We computed the
complete topological phase diagram (m, φ, η) where m is an on-site inversion-symmetry breaking
term and identified all band gap closings at m = mc(φ, η) similar to the graphene case [108]. We
found the central band to be exactly flat for φc = (2n+ 1)π/2 and on this phase boundary mc(φc, η),
the system is a Dirac semimetal that hosts a single pseudospin-1 Dirac node whose position in the
Brillouin zone kc depends on η. In this case, we demonstrated that the flat band of the modified
Haldane-dice model is singular by finding a maximum quantum distance dmax = 1 of its Bloch
wave function around the band-crossing point. To confirm this, we derived the general CLSs with
Haldane-type NNN interaction and showed that the set of all CLS is linearly dependent in the vicinity
of kc. We derived the two non-contractible loop states and an extended state whose components
depend on the parameters of the system.

Throughout this thesis, we have neglected the electron-electron interaction to study the effect
of external (strain) fields and boundary conditions on the flat band and Dirac-Weyl quasiparticle
dynamics. As pointed out in the introduction, the electron-electron interaction in flat-band systems
has striking consequences for correlation effects. In this regard, future works should focus on the
interplay of strain and electron-electron interaction on the dice lattice regarding the valley population
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1 Summary

dynamics and correlation effects.
After all, the α-T3 lattice is a promising platform to study one-particle physics with a relativistic-

like Hamiltonian beyond the conventional Dirac equation due to the flat band and increased (pseudo-)
spin. We have shown that the intrinsic inversion-symmetry breaking by the scaling parameter α
allows for the precise manipulation of the valley and sublattice degree of freedom without any
(gap-creating) on-site potential because of the variational Berry phase, which, in combination with
externally applied strain fields to Dirac-Weyl quasiparticles, could be a building block of future
valleytronic devices. In addition, the α-dependent interband coupling measured by the maximum
quantum distance around the Dirac nodes makes the α-T3 lattice an ideal playground for studying
geometric contributions to interband effects.
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Abstract. We address the electronic properties of quantum dots in the two-dimensional α−T3 lattice when
subjected to a perpendicular magnetic field. Implementing an infinite mass boundary condition, we first
solve the eigenvalue problem for an isolated quantum dot in the low-energy, long-wavelength approximation
where the system is described by an effective Dirac-like Hamiltonian that interpolates between the graphene
(pseudospin 1/2) and Dice (pseudospin 1) limits. Results are compared to a full numerical (finite-mass)
tight-binding lattice calculation. In a second step we analyse charge transport through a contacted α− T3
quantum dot in a magnetic field by calculating the local density of states and the conductance within the
kernel polynomial and Landauer-Büttiker approaches. Thereby the influence of a disordered environment
is discussed as well.

1 Introduction

Quantum matter with Dirac-cone functionality is
expected to provide the building block of future electron-
ics, plasmonics and photonics. Against this background,
above all graphene-based nanostructures were intensively
examined, both experimentally and theoretically, in the
recent past. This is because their striking electronic
properties can be modified by nanostructuring and
patterning, e.g., manufacturing nanoribbons [1], nanor-
ings [2], junctions [3], quantum dots [4], or even quantum
dot arrays [5,6]. Thereby the transport behaviour heavily
relies on the geometry of the sample (or device) and its
edge shape [7,8].

The mutability of systems with Dirac nodal points,
which is especially important from a technological point
of view [9], can also be achieved by applying external elec-
tric (static or time-dependent) fields. One of the options
is nanoscale top gates that modify the electronic structure
in a restricted area [10]. This allows to imprint junc-
tions and barriers relatively easy, and therefore opens
new possibilities to study fascinating phenomena such as
Klein tunnelling [11,12], Zitterbewegung [13,14], particle
confinement [15,16], Veselago lensing [17], Mie scattering
analogues [18–22] and resonant scattering [23,24]. Clearly
the energy of the charge-carrier states can be manipulated
by (perpendicular) magnetic fields as well. With this the
quantum Hall effect, the Berry phase curvature, the Lan-
dau level splitting and Aharonov-Bohm oscillations have
been investigated [2,25,26].

Shortly after the field of graphene was opened,
Dirac-cone physics was combined with flat-band physics

a e-mail: fehske@physik.uni-greifswald.de

in a modified lattice, the α−T3 lattice, which is obtained
by coupling one of the inequivalent sites of the honey-
comb lattice to an additional atom located at the centre
of the hexagons with strength α [27–29]. Obviously, such
a lattice interpolates between graphene (α = 0) and the
Dice lattice (α = 1). Most notably, the flat band crosses
the nodal Dirac points, which has peculiar consequences,
such as an α-dependent Berry phase [30], super-Klein
tunnelling [31,32], or Weiss oscillations [33]. Interest-
ingly, the magneto-optical response will be also enhanced
due to the flat bands [34]. Analysing the frequency-
dependent magneto-optical and zero-field conductivity of
Hg1−xCdxTe [35] at the critical cadmium concentration
xc ' 0.17 (marking the semimetal-semiconductor transi-
tion), it has been shown that this material can be linked to

the α− T3 model with α = 1/
√

3 [36]. Other possibilities
to realise the α− T3 and Dice (α = 1) models experimen-
tally are cold bosonic or fermionic atoms loaded in optical
lattices [30,37].

The massless Dirac equation [38] provides the basis
for numerous theoretical investigations of the low-energy
excitations in these novel, strictly two-dimensional sys-
tems [29,32,39–53], whereby the quasiparticles carry a
pseudospin 1 in the Dice lattice rather than pseu-
dospin 1/2 in the case of graphene. Accordingly one
usually works with a three- (Dice) and two-component
(graphene) realisation of the standard Dirac-Weyl Hamil-
tonian. Investigating the electronic properties of α − T3

quantum dots in magnetic fields, we also start from such
a description, and therefore must implement a bound-
ary condition when the dot is cut out from the plane
[39,54,55]. Of course, this approach has to be approved
by comparison with lattice model results obtained numer-
ically [55–57]. Addressing the transport behaviour of
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contacted dots and the influence of disorder on that we
have to work with the full lattice model in any case.

The outline of this paper is as follows. In Section 2
we introduce the α − T3 model, discuss the continuum
approach, derive the infinite-mass boundary condition,
and solve the eigenvalue problem for an isolated quan-
tum dot in a constant magnetic field in dependence on
α. Section 3 contains our numerical results for the eigen-
value spectrum, the (local) density of states and the
conductance. Thereby we critically examine how the con-
tinuum model results compare to the numerical exact
tight-binding lattice-model data (Sect. 3.1). Afterwards
we study transport through a quantum dot subject to a
magnetic field in the end-contacted lead-sample geome-
try most relevant for experiments (Sect. 3.2), and analyse
boundary disorder effects (Sect. 3.3). We conclude in
Section. 4.

2 Theoretical approach

2.1 α− T3 model

We start from the tight-binding Hamiltonian

Hα = −
∑

〈ij〉
teiΦija†i bj −

∑

〈ij〉
αteiΦij b†i cj

+ ∆
∑

i

(
a†iai − b†i bi + c†i ci

)
+ H.c. , (1)

where a(†), b(†) and c(†) annihilate (create) a particle
in a Wannier state centred at site A, B and C of the
α− T3 lattice, respectively. The nearest-neighbour trans-
fer amplitude between A and B sites is given by t, and
will be rescaled by α if hopping takes place between
nearest-neighbour B and C sites, see Figure 1a. In this
way, the scaling parameter interpolates between the hon-
eycomb lattice (α = 0) and the Dice lattice (α = 1). In the
presence of a vector potential A(r), hopping is modified

further by the Peierls phase Φij = 2π/φ0

∫ j
i
A(r)dr with

φ0 = h/e.
In order to implement boundary conditions below, we

have introduced a sublattice-dependent onsite potential
∆, which opens a gap in the band structure at the charge
neutrality point. In what follows we assume that ∆ > 0;
the case ∆ < 0 is obtained by changing the sign of the
energy E. Note that a positive ∆ will shift the flat band
to the bottom of the upper dispersive one.

Next we write down the corresponding continuum
Dirac-Weyl Hamiltonian in momentum space in the
absence of a magnetic field, being valid for low energies
near the Dirac-points K (τ = +1) and K ′ (τ = −1):

Hϕ
τ = vFS

ϕ
τ · p + U∆ , (2)

where ϕ = arctanα and τ is the valley index. In
equation (2), vF = 3at/2~ is the Fermi velocity, where
a refers to the lattice constant, and p = −i~∇ denotes
the momentum operator in two spatial dimensions. The
components of the pseudospin vector Sϕτ = (τSϕx , S

ϕ
y ) in

Fig. 1. (a) α − T3 lattice with basis {A,B,C} and Bravais-
lattice vectors a1 and a2. Next-nearest neighbours are con-
nected by δA,i (i = 1, 2, 3) where α gives the ratio of the
transfer amplitudes A-B and B-C. In the numerical work
we use graphene-like parameters, i.e., a lattice constant a =
0.142 nm and a transfer integral t = 3.033 eV which sets the
energy scale. (b) Continuum model energy dispersion near K
or K′ when ∆ = 0 with two linear dispersive bands and a flat
band at E = 0. (c) α − T3 dot setup with a constant mag-
netic field, perpendicular to the (x, y) plane. The quantum dot
D (blue region) with radius R and zero gap (∆ = 0) is sur-
rounded by a ring of width W (grey, dashed border) having a
gapful band structure (∆ > 0). The vector nD is perpendicular
to the boundary.

(three-dimensional) spin space,

Sϕx =

(
0 cosϕ 0

cosϕ 0 sinϕ
0 sinϕ 0

)
,

Sϕy =

(
0 −i cosϕ 0

i cosϕ 0 −i sinϕ
0 i sinϕ 0

)
, (3)

represent the sublattice degrees of freedom. In
equation (2), the matrix

U =

(
1 0 0
0 −1 0
0 0 1

)
(4)

introduces a mass term, similar to σz in the standard
(spin-1/2) massive Dirac-Weyl equation. Therefore Hϕ

τ
comprises the limiting cases of massive pseudospin 1/2
(α = 0) and pseudospin 1 (α = 1) Dirac-Weyl quasi-
particles. Rescaling the energy by cosϕ, the eigenvalues
Eτ,s|ψτ 〉 of Hϕ

τ |ψτ 〉 = Eτ,s|ψτ 〉 become

Eτ,0 = ∆ , (5)

Eτ,s = s
√

(vFp)2 + ∆2, (6)
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where s = ±1 marks the band index. Note that the energy
eigenvalues are valley degenerate.

2.2 Infinite mass boundary condition

Implementing the so-called infinite mass boundary con-
dition (IMBC) we take up a proposal by Berry and
Mondragon [58]. For this, we consider the Hamiltonian

Hϕ
τ = Sϕτ · p + ∆(r)U (7)

(setting vF = ~ = 1 in this section), with a position-
dependent mass term, ∆(r)U , which is zero (finite) inside
(outside) a circular region D, cf. Figure 1. Note that
Hermiticity of the Hamiltonian in D implies 〈nD · jτ 〉(r) =
0 at every point r of the boundary ∂D. Here, jτ = Sϕτ is
the current density operator and nD = (cosϑ(r), sinϑ(r))
is the normal vector of D. Then the local boundary condi-
tion for a general wave function ψτ = (ψτ,A, ψτ,B , ψτ,C)
is

ψτ,B

∣∣∣∣
r∈∂D

= iΓτ (r)
(

cosϕ eiτϑ(r)ψτ,A

+ sinϕ e−iτϑ(r)ψτ,C

) ∣∣∣∣
r∈∂D

. (8)

The variable Γτ (r) can be obtained from the solution
of the scattering problem at a planar mass step, Hϕ

τ =
Sϕτ ·p+ ∆Θ(x), where the height of the barrier is assumed
to be larger than the energy (∆ > |E|) and the Heaviside
step function divides the (x, y)-plane in regions I for x < 0
and II for x > 0. In doing so, we will consider only the
dispersive states, since 〈jτ 〉 = 0 for the flat band states.

In region I, the wave function with wave vector k =
(kx, ky) and propagation direction θk = arctan ky/kx is

ψI
τ,s =

1√
2



τ cosϕ e−iτθk

s
τ sinϕ eiτθk


 eikr

+
rτ√

2



τ cosϕ eiτθk

−s
τ sinϕ e−iτθk


 eik

′r . (9)

Here, k′ = (−ky, kx) denotes the wave vector of the
reflected wave having a valley-dependent reflection coeffi-
cient rτ .

In region II, the wave function takes the form

ψII
τ,s =

tτ√
2

(
τaτ,s
bτ,s
τbτ,s

)
e−qx+ikyy

dτ,s
, (10)

where tτ denotes the valley-dependent transmission coef-
ficient, (kx, ky) = (iq, ky), and

aτ,s = −i cosϕ
√

(q − τky)2(∆ + E), (11)

bτ,s =
√

(q2 − k2
y)(∆− E), (12)

cτ,s = −i sinϕ
√

(q + τky)2(∆ + E), (13)

dτ,s =
√

∆q2 + Ek2
y − τkyq cos 2ϕ(∆ + E). (14)

Obviously, ψII
τ,s is an evanescent wave perpendicular to the

boundary but oscillatory along ∂D.
Enforcing the continuity of the wave function at x = 0,

ψI
τ,s,B = ψII

τ,s,B , (15)

cosϕψI
τ,s,A + sinϕψI

τ,s,C = cosϕψII
τ,s,A

+ sinϕψII
τ,s,C , (16)

and performing the limit ∆→∞ (q →∞), we obtain

rτ,s =
is+ cos2 ϕ e−iτθk + sin2 ϕ e+iτθk

is− cos2 ϕ eiτθk + sin2 ϕ e−iτθk
. (17)

Since |rτ,s|2 = 1 ∀E, the incoming wave is perfectly
reflected at the boundary, regardless of τ and s. Inserting
the full wave function (9) with (17) and nD(x = 0) ≡ ex
into equation (8), we find Γτ = τ .

Clearly the whole scattering problem can be rotated by
any angle ϑ, i.e., for the α − T3 lattice the IMBC at ∂D
becomes:

ψτ,B = iτ
(
cosϕψτ,A e

iτϑ + sinϕψτ,C e−iτϑ
)
. (18)

At α = 0 we reproduce the IMBC of graphene [58].

2.3 Eigenvalue problem of the α− T3 quantum dot
in a perpendicular magnetic field

We now consider a circular quantum dot of radius R in
a constant magnetic field, B = Bez, related to the vector
potential A = B/2(−y, x, 0). Then, using polar coordi-
nates (x, y)→ (r, φ), the (minimal-coupling) Hamiltonian
is

Hϕ
τ = vFS

ϕ
τ · (p + eA) + ∆UΘ(r −R) . (19)

In the quantum dot region D (r < R) we have ∆ = 0 and

Hϕ
τ = τ~ωc

(
0 cosϕLτ,− 0

cosϕLτ,+ 0 sinϕLτ,−
0 sinϕLτ,+ 0

)
. (20)

Here, Lτ,∓ = −ie∓iτφ
{
∂ρ ± τLz

~ρ ± τρ
}

, Lz = −i~∂φ,

~ωc =
√

2~vF/lB , lB =
√

~
eB , and ρ = r/

√
2lB . Rotational

symmetry ([Hϕ
0 , Jz] = 0 ) suggests the ansatz:

ψDτ =



χτ,A e

i(m−τ)φ

χτ,B e
imφ

χτ,C e
i(m+τ)φ


 . (21)
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With this, for the dispersive band states, we obtain the
following differential equation for the χτ,B component:

0 =

{
∂2
ρ +

1

ρ
∂ρ − 2m+ 4ε2

τ

+2τ cos 2ϕ−
(
m2

ρ2
+ ρ2

)}
χτ,B , (22)

yielding

ψDτ,s = N



τ cosϕρ−m+τfτ,Ae

i(m−τ)φ

iετρ
−mL−mnτ (ρ2)eimφ

τ sinϕρ−m−τfτ,Cei(m+τ)φ


 e−

ρ2

2 . (23)

The Lba(x) are the generalized Laguerre polynomials,

fτ,A =

{−L−m+1
n+−1 (ρ2), if τ = +1

(n− + 1)L−m−1
n−+1 (ρ2), if τ = −1 (24)

fτ,C = f−τ,A , (25)

nτ = ε2
τ + (τ cos 2ϕ− 1)/2 is the principal quantum num-

ber, ε2
τ = (Eτ,s/~ωc)2, m is the total angular quantum

number, and N is a normalization constant. Note that
χτ,C 6= χ−τ,A ∀ϕ, implying a valley asymmetry for α < 1.

Employing now the IMBC (18) for r = R, where nD =
nr = (cosφ, sinφ), we obtain

0 = cos2 ϕρ2τfτ,A(ρ)

+ sin2 ϕfτ,C(ρ)− ετρτL−mnτ (ρ)

∣∣∣∣
ρ=R/

√
2lB

. (26)

As a result, the energy eigenvalues Eτ,snρ,m, are deter-
mined by the (positive and negative) zeros of this equa-
tion, where nρ = 1, 2, 3 . . . is the radial quantum num-
ber. At α = 0, these eigenvalues are related to those
derived previously for graphene [39,47,55] by replacing
m→ (m− 1).

In the large-R (or large-B) limit, we can exploit the rela-
tion between Laguerre polynomials Lba(x) and confluent
hypergeometric functions of the first kind M(a, b, x):

Lba(x) =

(
a+ b
b

)
M(−a, b+ 1, x) . (27)

In leading order, M(−a, b+ 1, x→∞) takes the form [59]:

M(−a, b+ 1, x) =
Γ(b+ 1)

Γ(−a)
exx−a−b−1

[
1 +O(|x|−1)

]
.

(28)

Substituting this into equation (26), we obtain sin(πnτ ) =
0. Consequently nτ = 0, 1, 2,. . . and the energy eigenvalues
(Landau levels) become [30]

Eτ,nτ ,s = s~ωc

√
nτ +

1

2
(1− τ cos 2ϕ). (29)

For the flat band states, a similar calculation gives

ψDτ,0 =




sinϕρ−m+τfτ,Ae
i(m−τ)φ

0
cosϕρ−m−τfτ,Cei(m+τ)φ


 e−

ρ2

2 . (30)

Since ψDτ,B ≡ 0, this is always compatible with the IMBC.

Clearly, Eτ,0 = 0 [cf. Eq. (5)].

3 Results and discussion

3.1 Isolated quantum dot

3.1.1 Continuum model

Figure 2 presents the analytical results for the mag-
netic field dependence of the energy spectra of (isolated)
α − T3 quantum dots with IMBC. For all α, we observe
flat bands at E = 0 (red lines) and a merging of the
quantum dot states to the Landau levels characterised
by quantum number nτ (dotted curves) when the mag-
netic field increases. Note that nτ = nτ (nρ,m) (the data
show the results for nρ ≤ 3 and |m| ≤ 10). Different
from normal semiconductors, the Landau levels exhibit
a square-root dependence on B [cf. Eq. (29)], i.e., they
are not equidistant.

In the graphene-lattice model (α = 0, top panels), we
arrive at the same conclusions as previous work [47,55],
also for larger total angular and radial quantum num-
bers. According to the IMBC, the spectra show a broken
particle-hole symmetry and Em 6= E−m, even for B =
0 [where the eigenvalues are twofold degenerate (Eτ =
E−τ )]. For B > 0 time-reversal symmetry is broken and
we have Eτ = −E−τ . Combining the spectra of both
valleys K and K ′, the symmetry is restored.

In the α − T3-lattice model with 0 < α < 1 (see mid-
dle panels), the situation is the same for B = 0, i.e.,
we find Em 6= E−m and valley degeneracy Eτ = E−τ .
Clearly time-reversal symmetry is broken at B > 0, but
now Eτ 6= −E−τ . As a consequence, the eigenvalues vary
differently when B is increased. Such valley-anisotropy has
been found in the magneto-optical properties of (zigzag)
α− T3 nanoribbons [34].

For the Dice-lattice model (α = 1, bottom panels), we
have a specific situation. Here, Em = E−m at B = 0, i.e.,
the state is now fourfold degenerate. When B > 0 the
states in each valley are still two-fold degenerate (Kramers
degeneracy), and the magnetic-field dependence of the
energy spectrum is the same at the K and K ′ points.

Let us now discuss the convergence of the eigenvalues
against the Landau levels in some more detail. The first
Landau level comprises all eigenvalues with m < 0; the
higher Landau levels have contributions with m < nτ .
This holds for K and K ′, independent of α. Obviously,
the eigenvalues with positive (negative) energies cross the
Landau levels first, before they converge towards these
values from below (above) at the K (K ′) point when the
magnetic field increases. The greater α, the more pro-
nounced this kind of “overshooting” appears to be. This
effect (being largest at α = 1) is not observed for negative
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Fig. 2. Eigenvalue spectra of an α− T3 dot with radius R =
20 nm. Solid lines give the solutions of (26) as a function of
the perpendicular magnetic field B in valleys K (left) and K′

(right) when α = 0, 0.25, and 1 (top to bottom). Only results
with nρ = 1 (blue), 2 (violet) and 3 (orange) with −10 ≤ m ≤
10 are shown. Flat bands are marked in red. Dashed black lines
give the Landau levels (29).

(positive) energies at K (K ′). We note that in certain
cases the eigenvalue levels form a wide band of states
and can be hardly resolved after bending up. In addition,
looking for instance at the blue curves for α = 0.25 (K ′

point, E > 0), it seems that there is no convergence of this
array of curves to a Landau level. Figure 3 (right panel)
shows, however, that convergence of theK ′-eigenvalue sets
is reached for larger values of the magnetic field. The inset
demonstrates an avoided crossing for m = −3: While the
eigenvalue belonging to nρ = 1 (blue curve) converges to
the first Landau level, the eigenvalue with nρ = 2 (violet

Fig. 3. Eigenvalue spectra of a quantum dot with α = 1/
√

3
up to B = 200 T (other model parameters and notation as in
Fig. 2). Inset: Magnification of solutions with m = −3, and
nρ = 1 (blue) respectively nρ = 2 (violet), at an avoiding
crossing.

curve) tends to the second one. The same happens for the
curves with other values of m.

3.1.2 Tight-binding model

We now analyse the validity range of the continuum model
derived in the low-energy charge carrier regime close to
the Dirac points K and K ′. For this we consider the
case of a circular dot imprinted on the α − T3 lattice,
whereby the dot region is not surrounded by an infinite
mass medium but by a ring (of width W with finite mass
potential ∆, cf. Fig. 1), which has the same lattice struc-
ture as D. In this way particularly good results can be
achieved if ∆/t > a/W . The eigenvalue problem of such a
finite (non-interacting) system can be solved numerically,
e.g., in a very efficient way by using the kernel polynomial
method [60]. By the kernel polynomial method we have
also direct access to the local (L) density of states (DOS),

LDOS(E)i =
∑

l

|〈i|l〉|2δ(E − El) (31)

(i is a singled out lattice site and n numbers the single-
particle eigenvalues), the DOS

DOS(E) =
∑

n

δ(E − En) , (32)

and the integrated (I) DOS

IDOS(E) =

E∫

−∞

DOS(E′)dE′ . (33)

Figure 4 contrasts the DOS of our quantum dot lat-
tice model with the eigenvalues of the continuum model,
in dependence on the strength of the applied magnetic
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Fig. 4. Logarithmic density of states, log(DOS) (grey curves),
of an α−T3 quantum dot (R = 20 nm) embedded in a circular
ring-barrier potential ∆/t = 0.8 (width W = 5 nm). For com-
parison, the continuum model eigenvalues of Figures 2 and 3
are incorporated (yellow curves). Again the flat band is marked
in red.

field B, for different values of α. In general we can say
that the continuum model provides an excellent approxi-
mation to the exact data for negative energies, regardless
of B and α. At this point let us emphasise once again
that if we had used a negative ∆, positive and nega-
tive energy results would change roles. Comparing the
data, one has to remember that the numerical exact
tight-binding approach takes into account larger angu-
lar momenta (m) than our continuum model calculation;
therefore additional eigenvalues will appear also for E < 0.
In the case of graphene (α = 0), we obtain a very good
agreement also for positive energies, even though some
features, such as the anti-crossing of energy levels, are
not reproduced in the continuum model [55]. At finite α
(and E > 0), the greatest difference between the contin-
uum and tight-binding model results is the “horizontal
band” of states at low energies, where the width of the
band increases when α is growing. These states are mainly
localised at the quantum dot’s boundary (see below), and
can be related to the sublattice-dependent potential ∆
along ∂D. Similar “anomalous” in-gap states were also
found in two-dimensional pseudospin-1 Dirac insulators
and have been attributed to the boundary between two
regions with different flat-band positions in a gapped Dice-
lattice system [61]. The edge states in our system have the
same origin: The position of the flat band is shifted by ∆
when changing from region I to II.

Figure 5 compares the DOS of the tight-binding
quantum-dot model and the distribution of the eigenval-
ues in the continuum IMBC model (with nρ ≤ 3, |m| ≤
20) for weak and strong magnetic fields. The heights of the
steps in the integrated DOS can be taken as measure of
the spectral weight of the corresponding eigenstates, par-
ticularly with regard to the degeneracy of the levels (note
that the IDOS is not drawn for E > 0 for display reasons).
The figure shows once again that the main energy levels
are extremely well approximated by the continuum IBMC
model for E < 0. The sector E > 0 is reproduced less
accurately, obviously there are many states which are not
taken into account within the continuum approach. For
weak magnetic fields (B = 2 T, upper panel), the Landau
levels are more difficult to identify. For high magnetic
fields (B = 140 T, lower panel), states with large angu-
lar quantum numbers m contribute to each Landau level.
Note that we have included in the figure series of states
which are not yet converged for the nρ- and m-values used
(vertical dashed yellow lines).

3.2 Contacted quantum dot

We now consider a more realistic situation, where the α−
T3 quantum dot is contacted by leads. The boundary of
this “device” is realised covering the whole setup by a
sheath of width W with a gapful band structure due to
a (finite) mass term ∆, see Figure 6. To determine the
conductance between the left (L) and right (R) leads in the
limit of vanishing bias voltage, we employ the Landauer-
Büttiker approach [62]:

G = G0

∑

m∈L,n∈R

|Sn,m|2 (34)
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Fig. 5. DOS (black lines, left axis) and integrated DOS
(dashed lines, right axis; included for E ≤ 0 only) of an α−T3
quantum dot (where α = 1/

√
3) in a perpendicular magnetic

fields: B = 2 T (upper panel) and B = 140 T (lower panel).
Yellow vertical lines mark the energy eigenvalues of the contin-
uum model with IMBC. For B = 140 T, the Landau levels are
included (red lines). Other model parameters are as in Figure 4.

Fig. 6. Drawing of the α − T3 lattice quantum dot (radius
R) contacted by leads (width lW ). The boundary condition is
realised by a W -wide stripe with mass term ∆ that covers the
whole element. The leads are docked by an additional mass
term ∆lead (blue region); the homogenous magnetic field B
points out of the plane. In the calculations we use R = 20 nm,
∆/t = 0.5, W = 5 nm, and lW = 80

√
3a− 2W .

with G0 = 2e2/h. G0 is the maximum conductance per
channel. The scattering matrix between all open (i.e.,
active) lead channels, Sn,m, can be easily calculated with
the help of the Phyton-based toolbox Kwant [63].

Figure 7 shows the conductance of the contacted α−T3

quantum dot as a function of energy at weak (upper panel)
and strong (lower panel) magnetic fields. The conductance
essentially probes the extended (current-carrying) states

Fig. 7. Conductance of the contacted α−T3 quantum dot with
α = 1/

√
3 as a function of energy for B = 2 T (top) and B =

140 T (bottom). The other dot parameters are as indicated in
Figure 6. Results for ∆lead = 0 (∆lead = 0.2 eV) are shown in
black (blue). Yellow vertical lines are those included in Figure 5
as well. Landau levels are marked by red lines. The LDOS for
the selected signatures (1), (2) and (3) is given in Figure 8
below.

of the dot. Again, we choose α = 1/
√

3, in order to allow
for a direct comparison with the DOS data of the iso-
lated dot depicted in Figure 5. Let us first consider the
case ∆lead = 0 (black dashed lines). For B = 2 T, we see
that the first five peaks at E < 0 can be assigned to the
eigenvalues of the continuum model for the isolated dot.
For larger negative energies the conductance resonances
will start to overlap, resulting in broader peaks, more
specifically bands. In this range the rotation symmetry
is completely destroyed by the contacts, and m is not
a good quantum number anymore. For positive energies
we recognise larger deviations from the continuum eigen-
values as is the case for the DOS (cf. Fig. 5); overall
much more conductive channels appear. At B = 140 T,
we observe the expected Landau level quantisation of the
conductance. Obviously, the steps respectively plateaus
are less pronounced at positive and larger absolute values
of the energy once again. The conductance quantisation
basically breaks down if the cyclotron diameter dc =
2|E|/vFeB exceeds the lead width lW ; in this case the
charge carriers, moving on a cyclotron trajectory along
the quantum dot circumference, will miss the way out at
the right lead.

Working with additional barriers at the lead contacts
(∆lead = 0.2 eV, blue dashed lines), the conductance res-
onances are sharpened to some extent. This is because the
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Fig. 8. LDOS for the contacted α − T3 quantum dot at the
resonances indicated in Figure 7 by (1), (2) [B = 2 T; two
upper panels] and (3) [B = 140 T; lowest panel] for ∆lead =
0.2 eV. Remaining parameters given in Figure 6. The dashed
line marks the dot boundary.

dot region now is more self-contained. Of course, the trans-
mission of the device is reduced in total when the barrier
becomes too high (we have backscattering effects and, dis-
regarding Klein tunnelling, only evanescent particle waves
will enter the dot region).

Further information about the nature of the states
belonging to specific resonances can be obtained from
the LDOS. Figure 8 records and visualises the spatial
variation of the LDOS at the (resonance) energies E =
−0.055 eV (1), E = 0.059 eV (2) and E = 0.5 (3) for
B = 2 T and B = 140 T, respectively. For (1), the LDOS is
almost rotationally symmetric (owing to the leads there is
some weak asymmetry) and has a maximum at the centre
of the quantum dot. This is in accord with the correspond-
ing continuum solution (m = 0, snρ = −1 and τ = −1),
which according to equation (23) has no angle dependence.

Fig. 9. LDOS of the contacted α−T3 quantum dot surrounded
by a disordered circular ring. The LDOS is shown for a single
(but typical) realisation of the random mass term, where the

∆i are drawn out of the interval [0,1.6], i.e., ∆̂ = 0.8. Again we
consider the resonances (1), (2) [B = 2 T; two upper panels]
and (3) [B = 140 T; lowest panel] with system parameters as
in Figures 6, 7 and 8.

Resonances at higher energy, belonging to larger values
of m, will lead to more complicated LDOS pattern (not
shown). For (2), the LDOS is more or less localised at the
boundary of the quantum dot, i.e., this resonance will not
correspond to a bulk state as (1). Note that we find almost
the same conductances, G/G0 ' 0.98 (1) and G/G0 ' 1
(2), which indicates that we have one perfect current car-
rying (bulk or edge) state. In both cases, we observe some
scattering and “localisation” effects at the edges of the
(lead) mass barrier. At resonance (3), the LDOS at the
quantum dot boundary is also much larger than those in
the bulk (although by a factor of ten smaller compared to
cases (1) and (2); note the different scale of the color bar).
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Fig. 10. Conductance G/G0 for the resonances (1) [black
curves], (2) [blue curves] and (3) [red curves] (cf., Fig. 7) cal-

culated at different (discrete) disorder strengths ∆̂. Results
obtained for the disorder realisation used in Figure 9 (two other
disorder realisations) are marked by solid (dashed) lines, which
should guide the viewer’s eye only. All other parameters are as
in the previous figures.

Regardless of this, G/G0 ' 2.9, i.e., we have almost three
perfect transport channels. In this case we already entered
the quantum Hall regime, where quantum Hall edge states
evolve which differ in nature from the edge state (2).

3.3 Disorder effects

As a matter of course, imperfections will strongly influ-
ence the transport through contacted Dirac-cone sys-
tems [57,64,65]. This holds true even up to the point of
complete suppression, e.g., by Anderson localisation [66].
Nevertheless most of these nanostructures appear to be
conducting [67,68], simply because the (Anderson) local-
isation length exceeds the device dimensions for weak
disorder in one or two dimensions [67,68]. In our case, the
disorder caused by the boundary of the quantum dot is
of particular importance. To model these disorder effects,
we let the mass term fluctuate in the circular ring of
width W . More precisely, we assume ∆ → ∆i in equa-
tion (1), where ∆i is evenly distributed in the interval

[∆ − ∆̂,∆ + ∆̂] with ∆̂ < ∆, i.e., ∆̂ > 0 measures the
disorder strength. We note that only suchlike short-range
disorder causes intervalley scattering, and thus may lead
to Anderson localisation [69]. This holds at least in the
case α = 0 (graphene) and within the Dirac approxima-
tion. Long-range disorder, on the other hand, gives rise to
intravalley scattering which is not sufficient to localise the
charge carriers [70].

Figure 9 illustrates how the LDOS shown in Figure 8
for three characteristic resonances will change if we ran-
domise the mass potential ∆i with strength ∆̂ = 0.8 in
the ring covering the quantum dot. For this we have cho-
sen a randomly selected but from a physical perspective
typical realisation (sample) and followed the resonances

(1), (2) and (3) by increasing ∆̂ from zero to its final

value 0.8. Thereby the positions of the resonances (1) and
(2) are slightly shifted compared to the ordered case: We
find E = −0.057 eV (1) and E = 0.058 eV (2) for the
sample used in Figure 9. Since the plateau structure is
completely destroyed for the (disordered) high-field case
B = 140 T, we will leave E = 0.5 eV (3). It is obvious
that the LDOS of the “bulk-state” resonance (1) is not
changed much by the edge disorder (upper panel). This is

also reflected in the conductanceG/G0(∆̂ = 0.8) = 0.93 '
G/G0(0). A completely different behaviour is observed
for the “edge-state” resonance (2). Here the LDOS is
not homogeneously distributed along the periphery region
anymore. Instead we find an imbalance between energy
states (and associated transport channels) in the upper
and lower half of the quantum dot, which depends on
the specific sample of course. For other realisations the
LDOS will be larger in the lower half of the quantum
dot. In any case the conductance is substantially reduced,
however, for example, we have G/G0(∆̂ = 0.8) = 0.54 for
the depicted realisation. The effect of the disorder is simi-
larly strong for the quantum Hall edge-state resonance (3),

G/G0(∆̂ = 0.8) = 1.85), but here the LDOS is uniformly
spread about the upper and lower halves of the quantum
dot. Interestingly, it appears that now states can penetrate
more deeply into the barrier region.

Finally, we show in Figure 10 how the conductance
depends on the disorder strength ∆̂, for resonances (1),
(2) and (3) and three different disorder realisations each.

Despite the strong fluctuations at larger values of ∆̂, which
clearly result from large local differences of the onsite ener-
gies and a varying overlap of energetically adjacent states,
one observes a noticeable reduction of the conductance for
the states (2) and (3) located primarily near the quantum
dot boundary whereas the conductance of the bulk state
(1) is only little affected. Since the spatial dimensions of
the device are in the nanoscale regime, the conductance
of our setup is not self-averaging. Determining the prob-
ability distribution for the LDOS and conductances from
a large assembly of disorder realisations [71] could be a
promising approach to deal with this problem, but this is
beyond the scope of the present work.

4 Conclusions

To summarise, we considered a generalisation of both
graphene and Dice lattices, the so-called α − T3 lattice,
and studied the electronic properties of a quantum dot,
imprinted on this material, in a perpendicular static mag-
netic field. The quantum dot boundary condition was
implemented in a consistent manner by an infinite mass
term (circular ring having a finite band gap) in the con-
tinuum (tight-binding model) description. For an isolated
quantum dot we analysed the magnetic-field dependence
of the eigenvalue spectra at the K and K ′ Dirac nodal
points and demonstrated significant differences between
the graphene, Dice and α − T3 continuum model results,
particularly with respect to the degeneracy and the con-
vergence towards the Landau levels at high fields. The
comparison of our analytical results with exact numerical
data for the α − T3 tight-binding lattice shows that the
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states with negative band energies were generally satis-
factory reproduced (if not too far away from the neutral
point), whereas the lattice effects play a more prominent
role at positive energies. For a contacted quantum dot, our
transport calculations confirm the existence of transport
channels, i.e., current carrying states, at weak magnetic
fields, and Landau level quantisation of the conductance
(related to quantum Hall edge states) at larger fields. The
local density of states reveals the different physical nature
of these states. The LDOS not only indicates how the
boundary and the contacts affect the electronic structure,
but also how disorder in the quantum dot’s surrounding
will influence its transport behaviour. While transport
channels related to bulk resonances were less impacted,
edge channel resonance and quantum hall edge states are
strongly affected, giving rise to a significant reduction of
the conductance.

All in all, we are optimistic that the (strong) magneto-
response of valley-contrasting quasiparticles in α − T3

model materials provides a good basis for promising
valleytronics applications in near future.
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We test the valley-filtering capabilities of a quantum dot inscribed by locally straining an α-T3 lattice.
Specifically, we consider an out-of-plane Gaussian bump in the center of a four-terminal configuration and
calculate the generated pseudomagnetic field having an opposite direction for electrons originating from different
valleys, the resulting valley-polarized currents, and the conductance between the injector and collector situated
opposite one another. Depending on the quantum dot’s width and width-to-height ratio, we detect different
transport regimes with and without valley filtering for both the α-T3 and dice lattice structures. In addition, we
analyze the essence of the conductance resonances with a high valley polarization in terms of related (pseudo-)
Landau levels, the spatial distribution of the local density of states, and the local current densities. The observed
local charge and current density patterns reflect the local inversion symmetry breaking by the strain, besides the
global inversion symmetry breaking due to the scaling parameter α. By this way we can also filter out different
sublattices.

DOI: 10.1103/PhysRevB.103.165114

I. INTRODUCTION

In the emerging field of “valleytronics,” the valley degree
of freedom is used to distinguish and designate quantum
states of matter. For this, the band structure of the system
must have at least two inequivalent valleys that take over
the role of charge or spin in more traditional electronics
and spintronics. Two-dimensional condensed-matter materi-
als, such as graphene or semiconducting transition metal
dichalcogenides, host an easily accessible electronic valley
degree of freedom to encode information [1–3]. In this respect
graphene-based valleytronics seems to be particularly promis-
ing. This is mostly because of graphene’s striking electronic
properties [4], including Dirac-cone functionality which can
be tuned by applying external electric fields, even in restricted
areas, e.g., by top gates [5]. Another advantage is that diverse
graphene nanostructures such as ribbons, rings, quantum dots,
or junctions can be manufactured without major problems,
whereby transport through these “devices” strongly depends
on the geometry of the sample and its edge shape [6].

Graphene-based structures also sustain a large amount of
strain without breaking because of their strong (planar) co-
valent sp2 bonds [7]. In graphene, the coupling between the
mechanical deformation and electronic structure has remark-
able consequences: It introduces an effective gauge field in the
low-energy Dirac spectrum. The associated pseudomagnetic
field (PMF) has been demonstrated in scanning tunneling mi-
croscopy (STM) experiments [8], which reveal Landau level
(LL) quantization. Most notably, strain-induced PMFs con-

*fehske@physik.uni-greifswald.de

serve time-reversal symmetry, unlike real magnetic fields, and
therefore point in opposite directions in graphene’s inequiva-
lent valleys K and K′ related by time-reversal symmetry [9].
This sign difference together with a spatially varying PMF
forms the basis for theoretical proposals to manipulate the
valley degree of freedom in graphene-based structures by
nanoscale strain engineering [10–14]. In experiments, such
local deformation fields can be produced and controlled by
STM tips [15]. Breaking the valley degeneracy and spatially
separating the electrons from different valleys is clearly a pre-
requisite for every form of valleytronics. In this context, it has
been shown that Gaussian bumps lead to different real-space
trajectories for K and K′ electrons, and therefore can act as
valley filters and beam splitters [10,13,16,17].

The combination of strain, Dirac-cone physics, and flat-
band physics in a modified α-T3 lattice structure is an
interesting case to study, not only because the flat band then
crosses the nodal Dirac points with peculiar consequences
for the Berry phase [18], Klein tunneling [19], Weiss oscil-
lations [20], or LL quantization [21], but also regarding the
interplay between the local inversion symmetry breaking by
strain and the global one by α. In the α-T3 structure one of
the inequivalent sites of the honeycomb lattice is connected
to a site located in the center of the hexagons with strength
α, i.e., in a certain sense this system interpolates between
graphene (α = 0) and dice (α = 1) lattices [22]. The dice
lattice can be fabricated by growing trilayers of cubic lattices,
e.g., SrTiO3/SrIrO3/SrTiO3, in the (111) direction [23]. An
α-T3 lattice with an intermediate scaling parameter α = 1/

√
3

has been reported for Hg1−xCdxTe at a critical doping [18,24].
Optical lattice realizations of the α-T3 structure that would
allow tuning of α have been also suggested [18,24]. Based on
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this background, it is not surprising that there have been recent
activities to exploit valley filtering in the α-T3 and dice models
to realize, for example, a geometric valley-Hall effect [25] or
magnetic Fabry-Pérot interferometry [26]. Nevertheless, the
role of nonuniform strain in confined (open) α-T3 nanostruc-
tures is still widely unexplored, especially with regard to the
above-mentioned combination of local and global inversion
symmetry breaking.

In this paper, we address this issue by investigating the
transmission of particles through a quantum dot created by an
out-of-plane centrosymmetric deformation of an α-T3 lattice
in the center of a four-terminal configuration with zigzag
terminations. In Sec. II we introduce our model and discuss
the basic impact of the strain-induced PMF with trigonal
symmetry in a continuum approach, allowing for an analytical
treatment. In particular, taking into account the first-order
corrections to the transfer integrals only, we can determine
the (pseudo-) Landau levels (LLs) and specify their valley
dependence with regard to filtering effects. To also investigate
highly strained samples of any geometry and with specific
boundaries, we numerically solve the full (tight-binding)
lattice-model problem in Sec. III. For this, we employ the
Landauer-Büttiker scattering matrix [27] and kernel polyno-
mial [28] approaches. Using the KWANT toolbox [29], we
analyze the conductance, the valley polarization, and the local
charge and current densities. The results will be discussed
with a perspective of potential device applications. Our con-
clusions are found in Sec. IV.

II. THEORETICAL APPROACH

We start from a tight-binding description of the α-T3 lattice
by the Hamiltonian

Hα = −
∑
〈i j〉

ti ja
†
i b j − α

∑
〈i j〉

ti jb
†
i c j, (1)

where a(†), b(†), and c(†) annihilate (create) an electron in a
Wannier state centered at site A, B, and C, respectively. The
hopping scaling parameter α interpolates between the honey-
comb graphene lattice (α = 0) and the dice lattice (α = 1)
[see Fig. 1(a)]. In the pristine case, the transfer amplitude
of particles between nearest-neighbor sites becomes ti j = t .
Rescaling the energy by cos ϕ, where tan ϕ = α, the Fourier
transformed Hamiltonian (1) takes the form

Hα =
∑

k

ψ
†
k

⎛
⎝ 0 cos ϕ fk 0

cos ϕ f ∗
k 0 sin ϕ fk

0 sin ϕ f ∗
k 0

⎞
⎠ψk (2)

in k space with ψk = (ak, bk, ck ) and

fk = −
3∑

j=1

t je
−ik·δ′

A, j . (3)

We now consider a lattice distortion by a strain field
u(x, y) = [ux, uy, uz ≡ h(x, y)]. Then the displaced lattice co-
ordinates r′ = r + u and the bond lengths vary according to
di j = |r′

i − r′
j |, yielding bond-dependent transfer integrals:

ti j = t exp{−β(di j/a − 1)}. (4)

FIG. 1. (a) Pristine α-T3 lattice with basis {A, B,C} and Bravais
lattice vectors a1 and a2. Neighboring sites are connected by vectors
δA, j ( j = 1, 2, 3); the transfer amplitudes on A-B and B-C bonds are
t and αt , respectively. (b) Four-terminal configuration with a quan-
tum dot generated by the Gaussian deformation (16), where H =
17.9 nm, σ = 20 nm, and W = 50 nm. (c) Strain-induced pseudo-
magnetic field calculated for electrons residing in the K valley. These
electrons can pass the quantum dot from L to R whereas electrons
stemming from the K′ valley will be reflected.

In Eq. (4), β = −∂ log t/∂ log a is the Grüneisen parameter
with a being the lattice constant of the unstrained lattice.
These equations will be the basis for the exact numerical study
carried out in Sec. III.

At first, however, let us perform some theoretical consider-
ations for an easier interpretation of the results below. If the
strain is weak, we only need to take into account first-order
corrections to the hopping parameter:

t j � t

(
1 − β

a2
� j

)
. (5)

Here, � j = δA, jε δA, j , where the strain tensor ε is given as

(ε)i j = ∂iu j + ∂ jui + (∂ih)(∂ jh), i, j = x, y, (6)

in the framework of continuum theory. Neglecting other in-
fluences of the strain, in the vicinity of the Dirac points
K(′) = (τ 4π

3
√

3a
, 0) with τ = 1 (τ = −1), we have

fK(′)+q � 3at

2
(τqx − iqy) +

3∑
j=1

βt

a2
� j (1 + iq · δA, j )e

iK(′)·δA, j .

(7)
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Inserting this expansion into Eq. (2), we find

Hϕ
τ = h̄vFSϕ

τ ·
(

q + e

h̄
As

)
, (8)

with vF = 3at/2h̄ (Fermi velocity) and q = −i∇ (momentum
operator in two spatial dimensions). The components of the
pseudospin vector Sϕ

τ = (τSϕ
x , Sϕ

y ) in the three-dimensional
spin space,

Sϕ
x =

⎛
⎝ 0 cos ϕ 0

cos ϕ 0 sin ϕ

0 sin ϕ 0

⎞
⎠, (9)

Sϕ
y =

⎛
⎝ 0 −i cos ϕ 0

i cos ϕ 0 −i sin ϕ

0 i sin ϕ 0

⎞
⎠, (10)

represent the sublattice degrees of freedom. Note that the
strain-induced vector potential

As = −τ
h̄β

2a

(
εxx − εyy

−2εxy

)
(11)

depends not only on the two-dimensional strain tensor, but
also on the valley index τ in an explicit way. Effectively, it
acts as an artificial gauge field that gives rise to a PMF,

Bs = (∇ × As)z = ∂xAy − ∂yAx, (12)

perpendicular to the α-T3 lattice plane.
In the presence of a magnetic field, the valley dependence

of the (pseudo-) Landau levels (LLs) is of special interest,
particularly with regard to valley-filtering effects when chang-
ing the α-T3 lattice scaling parameter α or the direction of
the PMF γ = ±1. For this purpose we analyze initially the
influence of a constant perpendicular PMF obtained from
As = −τγ Bsyex (Bs > 0). Such a PMF can be created by
triaxial strain of the lattice [30]. Introducing ladder operators
l̂ (†)
γ with [l̂γ , l̂†

γ ] = 1, we find for γ = +1,

l̂ (†)
+ =

√
h̄

2eBs
(qx ± iτqy + τeBsy/h̄). (13)

For γ = −1, l̂+ corresponds to l̂†
−. Accordingly, Eq. (8) be-

comes

Hϕ
τ,+ = τ h̄ωc

⎛
⎝ 0 cos ϕ l̂+ 0

cos ϕ l̂†
+ 0 sin ϕ l̂+

0 sin ϕ l̂†
+ 0

⎞
⎠ (14)

with ωc = h̄vF
√

2eBs/h̄, which, together with the correspond-
ing expression for γ = −1, yields the LL spectrum

Eτ,γ = ±h̄ωc

√
n + 1

2 [1 + γ cos(2ϕ)]. (15)

If we compare this result with the LL spectrum induced by
a real magnetic field in the α-T3 lattice [see, e.g., Eq. (4) in
Ref. [18]], we find that −τ corresponds to γ in Eq. (15). This
means that the pseudo-LLs are degenerate in valley space. Of
course, there exists an additional zero-energy flat band for 0 <

α � 1.
Finally, we note that the higher-order contributions (due to

larger strain) should give similar corrections as in the case of
graphene because fk is the same; for a recent review on strain
in graphene, see Ref. [31].

III. NUMERICAL MODEL AND RESULTS

In the following calculations we will use “graphene-
like” model parameters a = 0.142 nm, t = 2.8 eV, and β =
3 [10], where t sets the energy scale. Furthermore, we con-
sider the four-terminal configuration depicted in Fig. 1(b) to
study the transport properties of an α-T3 quantum dot im-
printed by straining the lattice with an out-of-plane Gaussian
bump:

h(ρ) = H exp (−ρ2/σ 2). (16)

Here, ρ gives the in-plane radial distance from the quantum
dot’s center. H and σ denote the magnitude and the character-
istic width of the deformation, respectively.

The resulting PMF follows from Eq. (12) together with
Eqs. (11) and (6):

Bs = τ
4h̄β

ae

H2

σ 3

(ρ

σ

)3
e−2(ρ/σ )2

sin 3φ (17)

(φ denotes the polar angle). Bs is visualized in Fig. 1(c)
in the vicinity of the Dirac point K. The PMF near K′ is
simply obtained by reversing the signs. As a result, electrons
injected from K and K′ valleys feel PMFs of opposite sign
and thus will move in opposite directions. This observation
gave rise to the proposal of strain-based valley filtering in
graphene [13,17].

To determine the conductance G between the left (L) and
right (R) leads in the limit of vanishing bias voltage, we use
the Landauer-Büttiker formula [27],

G = G0

∑
m∈L,n∈R

|Sn,m|2, (18)

where the scattering matrix between all open (i.e., active)
lead channels Sn,m can be easily calculated with the help
of the PYTHON-based toolbox KWANT [29]. In Eq. (18), G0

is the maximum conductance per channel. We should also
mention the use of zigzag boundaries for the injector (L)
and collector (R) leads. In this case the valleys are well
separated in momentum space [1]. The perpendicular leads,
which had been added to reduce the leakage of non-valley-
polarized currents into the collector [17], will have armchair
boundaries. This allows us to single out a valley conductance,
G[K(′ )] = G0

∑
m∈L,n∈R |S[K(′ )]

n,m |2, which is related to the proba-
bility that an injected electron will be transferred in any mode
belonging to the K (K′) valley of the collector. Then, with
G = G[K] + G[K′], the K(′) valley polarization of the output
current can be defined as

τ [K(′)] = G[K(′)]G−1. (19)

For validation of our numerical scheme we first reexam-
ined the graphene lattice case (α = 0) in Fig. 2, and confirmed
the previously found qualitative behavior [17] also for larger
values of the Fermi energy. The Fermi energy EF = 0.219 eV
has been chosen such that it exceeds the barrier produced
by the Gaussian bump for a wide range of strain parameters
H and σ . Raising EF will increase the cyclotron radius and
thereby reduce the valley polarization by effectively shrinking
the width of the bump. A maximum valley filtering τ [K] is
observed in regime III for σ > 15 nm and 1.1 � σ/H � 3.9
at W = 50 nm. In regime II we have quantum dots with large
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FIG. 2. Valley polarization by a strain-induced graphene-based
quantum dot. The contour plot shows τ [K], depending on H and σ ,
for the four-terminal configuration in Fig. 1(b). The Fermi energy of
the injected particles is EF � 0.22 eV.

H and rather small σ which generate very high PMFs and
therefore tend to repel the electron. This notably weakens the
filtering effect. In the blue “subregime” for σ > 10 nm, the
collector appears to be completely blocked for electrons from
the K valley [17]. The boundary between regimes II and III is
almost perfectly linear. The boundary between regimes III and
I is more diffuse. The low PMFs in regime I (due to the small
H and large σ ) are clearly inefficient with regard to valley
filtering.

Figure 3 demonstrates that the valley-polarization effect is
also observed for α-T3-lattice-based configurations. In the top
panel, we have chosen α = 1/

√
3 in view of Refs. [18,24],

whereas α = 1 in the bottom panel refers to the dice lattice.
Differences compared to the graphene-based system appear,
primarily, for small H and σ . In particular, we find no weak
valley-filtering effects in regimes I and II, which in the case
of zigzag graphene nanoribbons result from the zero-energy
edge state at the K point, whereas for α-T3 and dice zigzag
nanoribbons the number of zero-energy states at K is even
due to the additional flat-band state.

Comparing the valley polarization in the α = 1/
√

3 and
α = 1 lattices, the boundary between regime II and III is
smeared out in the former case for small to medium H . In the
dice lattice the most interesting region III now is more clearly
separated from the others, which might be advantageous in
terms of possible applications. Note that the ripple structures
found in the valley polarization will weaken with increasing
size of our configuration (cf. Ref. [17]).

Figures 4(a) and 4(b) give the conductance G and valley
polarization τ [K], respectively, as functions of the Fermi en-
ergy EF for a strain-induced α-T3 quantum dot. Additional
information is provided by the spatial distribution of the local
density of states (LDOS),

LDOS(E )i =
∑

l

|〈i|l〉|2δ(E − El ), (20)

0

5

10

15

20

25

30

σ
[n

m
]

I

II

III

α = 1√
3

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

H [nm]

0

5

10

15

20

25

30

σ
[n

m
]

I

II

III

α = 1

0.0 0.2 0.4 0.6 0.8 1.0
τ [K]

FIG. 3. Valley polarization by a strain-induced α-T3 quantum
dot. The contour plots give τ [K] as a function of H and σ for the four-
terminal configurations with α = 1/

√
3 (top) and α = 1 (bottom),

where EF � 0.22 eV. We included the linear regime boundaries of
Fig. 2 for comparison.

and the local current density,

J (m)
i j = i

h̄

[〈 j|(Hα
i j

)†|i〉(m) − 〈i|Hα
i j | j〉(m)

]
, (21)

where |i〉 and | j〉 are the single-particle wave functions pro-
jected on the respective sites. Equation (21) holds for the mth
mode injected by the lead at energy EF; the total (incident)
current density is Ji j = ∑

m J (m)
i j . Utilizing again KWANT [29]

and the kernel polynomial method [28], these quantities can
be computed very efficiently. The LDOS and J are shown in
Figs. 4(c)–4(f) and 4(g)–4(j), respectively, for the resonances
(1), (2), (1′), and (2′) marked in Figs. 4(a) and 4(b).

We begin the discussion of how the strained α-T3 quantum
dot affects the transport properties of the configuration by
examining the conductance (upper panels of Fig. 4, left ordi-
nate) and the valley polarization (right ordinate). Of course,
a notable current will only flow through the device if the
Fermi energy EF exceeds the barrier produced by the strained
quantum dot. Otherwise the bump, having a high PMF in-
side, will basically block the flow of electrons towards the
collector. We note that our finite quantum system can have
a finite, albeit extremely low, transmission probability for
(K- or K′-valley-polarized) electrons with smaller EF. That
notwithstanding, a high valley polarization may occur in this
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FIG. 4. (a), (b) Conductance G/G0 and valley polarization τ [K] as a function of EF for a strain-induced α-T3 quantum dot with H = 17.9 nm
and σ = 20 nm. For the marked resonances (1) at EF = 0.219 eV and (2) at EF = 0.387 eV (lattice with α = 1/

√
3) we have τ [K] = 0.86 and

τ [K] = 0.76, respectively. For resonances (1′) at EF = 0.219 eV and (2′) at EF = 0.344 eV (dice lattice, α = 1) we find τ [K] = 0.98 and
τ [K] = 0.86, respectively. (c)–(f) Zoomed-in LDOS at resonances (1(′)) and (2(′)). (g)–(j) Corresponding intensity-coded current densities |Ji j |
(here, the lines and arrows are a guide to the eye.)

regime just as in the graphene case, where τ [K] reaches unity
for small energies because of valley-polarized zigzag edge
states.

For α = 1/
√

3 above the threshold (�0.2 eV), two regions
(bands) in the vicinity of resonance (1) and (2) with a high
transmission probability are observed (in the displayed en-
ergy interval 0.2–0.5 eV). Here, the conductance shows an
oscillating behavior that can be attributed to LL quantization
(cf. the discussion of Fig. 5 below). In the dice-lattice case,
the conductance features only a single band of resonances
between (1′) and (2′) with particularly high valley polarization
and can be similarly attributed to LL quantization. Increasing
(decreasing) the PMF by varying H or σ will shift this region
to higher (lower) Fermi energies as the LL are proportional to√

Bs [see Eq. (15)].
To further characterize the different transport channels we

now examine the spatial variation of the LDOS in the quantum
dot region. For a graphene-based (α = 0) quantum dot con-
figuration, the LDOS will show a “flower“-like pattern with
sixfold symmetry, where consecutive “petals” belong to the A
or B sublattice [10,16].

In the α-T3 lattice with α = 1/
√

3 the inversion
symmetry is broken in two ways: Besides the local inversion
symmetry breaking by the strain, α itself breaks the inversion
symmetry between sublattices A and C on a global scale. As a
result, the “petals” of graphene’s “flower”-like LDOS pattern
will have alternating large and small amplitudes [see Figs. 4(c)
and 4(d)]. The resulting ∇- and �-shaped LDOS patterns with
highly occupied sites belong to A-B and B-C sublattices and
correspond to the typical resonances (1) and (2) in regions
with high conductance, respectively. Moreover, the ∇ (�)
LDOS pattern is related to a negative (positive) sign of the
PMF. It is worth noting, however, that both configurations,
albeit separated by a large energy gap, possess an almost
equally high valley polarization.

In the α = 1 dice lattice, we rediscover the sixfold symme-
try of the LDOS pattern in view of the threefold symmetries of
the positive, respectively negative, strain-induced PMFs [cf.
Fig. 1(c)]. This is illustrated by Figs. 4(e) and 4(f) for the
resonances (1′) and (2′), respectively, but holds for the whole
series of conductance peaks of Fig. 4(b). Clearly the spatial
size and magnitude of the LDOS “petals” depend on the value
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FIG. 5. Transport properties of a strained α-T3 quantum dot with
A = 17.9 nm, σ = 20 nm. (a) Contour plot of the conductance G in
the α-EF plane. Dashed lines mark the lowest pseudo-LLs, according
to Eq. (15) with n = 0, for five equidistant Bs fields ranging from
100 to 200 T and γ = 1 (yellow), −1 (magenta). (b) Zoom-in of the
contour plot. (c) LDOS at E = 0.335 eV and α = 0.95 [marked in
(b) by the red circle].

of Fermi energy. In this regard, Figs. 4(e) and 4(f) represent
rather extreme situations.

Figures 4(g)–4(j) display the course of the local current
density, where its magnitude is coded by the blue-intensity
map and the arrows visualize the direction of the electron
flow. First, it becomes apparent that the electron flow from
L to R is significantly blocked by the bump and the additional
(perpendicular) contacts collect the nonpolarized current very
effectively. Moreover, parts of the electrons are “confined” in
the quantum dot region in long-living resonant states, just as
observed for circular graphene quantum dots [32–36]. This
becomes particularly obvious if one looks at Fig. 4(i), where
the current is encircling the PMF. Nevertheless, in all cases,
substantial amounts of electrons are able to penetrate through
the quantum dot (preferably along the zero-PMF lines) and
finally reach the collector R. Recalling the valley polarization
according to Figs. 4(a) and 4(b), we can conclude that this
particle stream is made up of electrons belonging to the K
valley. Apparently the current intensities in Figs. 4(g) and 4(h)
nicely feature the ∇ and � α-T3-lattice LDOS patterns in
Figs. 4(c) and 4(d), respectively, and what is more, the current
is valley polarized although it seems that the electrons do not
feel the full PMF of Fig. 1(c).

Figure 5(a) provides a contour plot of the conductance
dependence on the scaling parameter α and the Fermi energy
EF. In order to assign the onset of the conductance and some
of resonances we included the pseudo-LLs (15) for n = 0 and

γ = ±1 at different PMFs Bs in the range 100–200 T, where
the magenta (yellow) curves belong to γ = −1 (+1). Then, at
α = 1/

√
3 � 0.577, the resonances (1) and (2) from Fig. 4(a)

fall within the range of the LLs with n = 0, γ = −1 and
n = 0, γ = 1, respectively, exhibiting the ∇ and � pattern.
Bearing in mind that γ in the PMF takes the role of −τ for
a real magnetic field, the change in the sublattice polarization
of the LDOS is understandable. This means that exchanging
the valleys accounts for the change in the sublattices A → C.

In Fig. 5(b) the region close to the dice-lattice case is
enlarged, where the crossing of the γ = ±1 resonances takes
place in Fig. 5(a). Here, the LDOS exhibits overlapping ∇
and � patterns. This is exemplarily demonstrated in Fig. 5(c).
Note that the LDOS shows a similar behavior at the other
(pseudo-LL) “crossing points” in Figs. 5(a) and 5(b).

IV. SUMMARY

To conclude, we have demonstrated how nanoscale strain
engineering of pseudomagnetic fields can be used to cause and
control valley-polarized transport through an α-T3 quantum
dot embedded in a four-terminal configuration with zigzag
edges. The strain (pseudomagnetic field) locally breaks the
inversion symmetry of the system. By utilizing the KWANT

software package, we presented numerically exact results for
quantities that characterize the electronic properties and func-
tionality of the considered device. Specifically, we discussed
the conductance, the valley-filter efficiency, and the spatial
charge and current density distributions. We noticed that the
conductance resonances with high valley polarization could
be related to the (pseudo-) Landau levels of the continuum
quantum dot model. Thereby the local current densities reveal
that transmission of electrons with given, let us say, K-valley
polarization is possible and takes place predominantly along
the lines of vanishing pseudomagnetic field; at the same time,
electrons coming from the K′ valley will be blocked by the
quantum dot, and vice versa. For the dice model, at the set
of resonances appearing in the first “conductance band,” the
maxima in the local density of states show a sixfold symmetry
in real space, just as for the graphene case. Any finite α < 1,
however, gives rise to a (global) sublattice asymmetry and
therefore creates an energy gap between states belonging to a
local density pattern with threefold ∇ respectively � symme-
try. Compared to a graphene-based configuration, for the dice
and α-T3 lattices, the specific (limited) region in the quantum
dot’s width-and-height parameter space where the maximum
valley-filtering effect appears, is much more clearly separated
from that with valley-unpolarized transport. This might be
advantageous for potential applications. Furthermore, since
α �= 0, 1 globally breaks the inversion symmetry of the lattice,
the use of the proposed configuration as an A-C-sublattice fil-
ter is feasible. Finally, we note that our results are generic to a
class of lattices, which means they are applicable to graphene-
like materials but also transition metal dichalcogenides and
related materials. This also applies to kagome crystals where
elastic strain induces the same pseudomagnetic field near the
Dirac points as in the α-T3 lattice [37]. Equally important, the
discussed valley filter effects should stay intact even for weak
interactions or spin-orbit coupling as they primarily induce an
energy gap.
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Mechanical deformations in α-T3 lattices induce local pseudomagnetic fields of opposite directionality for
different valleys. When this strain is equipped with a dynamical drive, it generates a complementary valley-
asymmetric pseudoelectric field, which is expected to accelerate electrons. We propose that by combining these
effects by a time-dependent nonuniform strain, tunable valley filtering devices can be engineered that extend
beyond the static capabilities. We demonstrate this by implementing an oscillating Gaussian bump centered in a
four-terminal Hall bar α-T3 setup and calculating the induced pseudoelectromagnetic fields analytically. Within a
recursive Floquet Green-function scheme, we determine the time-averaged transmission and valley polarization,
as well as the spatial distributions of the local density of states and current density. As a result of the periodic
drive, we detect novel energy regimes with a highly valley-polarized transmission, depending on α. Analyzing
the spatial profiles of the time-averaged local density of states and current density we can relate these regimes
to the pseudoelectromagnetic fields in the setup. By means of the driving frequency, we can manipulate the
valley-polarized states, which might be advantageous for future device applications.

DOI: 10.1103/PhysRevB.106.245106

I. INTRODUCTION

In addition to charge and spin, electrons possess a
valley degree of freedom in exciting two-dimensional con-
densed matter materials such as graphene or transition metal
dichalcogenides. For example, graphene has two inequivalent
Dirac cones at the K and K′ valleys of the Brillouin zone [1].
These valleys can be used to carry and encode information for
logical operations, opening the field of “valleytronics” [2–4].
The main challenge for valleytronic devices is the precise
control of valley polarization. Several proposals for valley
filters and spatially separated valley-resolved currents by, e.g.,
nanoconstrictions [2], inversion-symmetry breaking [5], or
line defects [6,7] have been made.

Graphene’s outstanding ability to withstand mechanical
deformations of up to 25% due to the strong sp2 bonds [8] and,
most importantly, its extraordinary electromechanical cou-
pling is particularly promising in this regard. Because geomet-
rical deformations modify the electronic hopping amplitude
between the atoms, effective gauge fields with corresponding
pseudomagnetic fields (PMFs) of more than 300 T can be
generated [9]. Remarkably, electrons residing in the K or K′

valley feel opposing strain-induced PMFs since time-reversal
symmetry is conserved. In connection, inhomogeneous PMFs
due to out-of-plane deformations have attracted much at-
tention because valley filters and beam splitters can be
engineered [10–15], for an overview see Ref. [16]. Experi-
mentally, such deformations can be created and controlled by
STM tips [17]. Since the observed effects depend heavily on
the energy and the degree of the deformation, there have been

*fehske@physik.uni-greifswald.de

efforts to improve the valley-filtering efficiency by arranging
multiple Gaussian bumps in superlattices [18,19]. Interest-
ingly, time-dependent strains introduce additional pseudoelec-
tric fields (PEFs) proportional to the effective gauge field.
The PEFs give rise to valley-current generation and phonon
damping [20,21] and charge pumping in mechanical res-
onators [22]. Recently, it has been demonstrated that graphene
nanodrums are viable means for valleytronic devices [23].
Also, crossed pseudoelectromagnetic fields have been shown
to produce a charge current via a pseudo-Hall effect [24,25].
Oscillating out-of-plane strains have already been realized in
nanoelectromechanical systems, where a suspended graphene
membrane or ribbon is driven by an ac gate voltage with typ-
ical resonance frequencies in the MHz to GHz range [26,27].

The somewhat more complicated α-T3 lattice is obtained
by placing an additional atom at the center of each hexagon
in the honeycomb lattice with strength α, thereby interpolat-
ing between graphene (α = 0) and the dice lattice (α = 1)
[28–30]. Most notably, an additional, strictly flat band appears
at zero energy going through the K and K′ points, while
the conduction and valence bands remain unaltered. There
are several proposals for experimental realizations. The dice
lattice can be manufactured by growing trilayers of cubic lat-
tices, e.g., SrTiO3/SrIrO3/SrTiO3, in the (111) direction [31].
In two dimensions, Hg1−xCdxTe at a critical doping has been
reported to map onto the α-T3 lattice with an intermediate α =
1/

√
3 parameter [28,32]. There are also several suggestions

for an optical α-T3 lattice that would allow a tuning of α by de-
phasing one pair of the three counter-propagating laser beams
[28,32]. Under external electromagnetic fields, the flat band
and α-dependent Berry phase have striking consequences on
the Landau level quantization [28,33], the quantum Hall effect
[34,35], Klein tunneling [36–39], and Weiss oscillations [40].
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While the flat band has zero group velocity and therefore
zero conductivity, it is predicted to play an important role for
the transport by its nontrivial topology [31,46], the coupling
to propagating bands [41–43], or interaction effects [44–47].
Furthermore, electrons dressed by external laser fields or
shaking in the α-T3 model have attracted interest particularly
in view of tuning the electronic properties [48–51] up to the
point of inducing Floquet topological phase transitions [52].
Accordingly, several works have exploited the valley degree
of freedom, e.g., via the geometric (valley) Hall effect [53],
magnetic Fabry-Pérot interferometry [54], or crossed Andreev
reflections [55].

Recently, elastic deformations in α-T3 structures have been
shown to induce PMFs that efficiently valley filter incoming
electrons by excitation to α-dependent (pseudo) Landau levels
[56,57]. When the out-of-plane deformations also oscillate in
time, complementary PEFs are induced that drive electrons
of opposite valleys in different directions. So far, however,
the electronic transport properties of graphene (α = 0) nano-
electromechanical systems have mostly been discussed in the
adiabatic limit, i.e., the ultrafast electrons simply perceive a
static deformation profile due to the slowly oscillating nan-
odrum [23].

In this paper, we therefore consider a time-periodically
oscillating Gaussian bump on an α-T3 lattice within the Flo-
quet theory and show how the PEF improves the valley-filter
capabilities and affects the flat band. For this, we study the
transmission of electrons in a four-terminal Hall bar setup
with zigzag terminations. The advantage of such driving is
the possible tuning of α-dependent valley-polarized states by
the driving frequency and the creation of (locally) flat bands
for α > 0. The paper is structured as follows. In Sec. II,
we introduce the tight-binding model with time-periodic
Gaussian deformations and derive the Fourier decomposi-
tion of the time-dependent transfer amplitudes analytically.
We also provide results for the DC transmission, the time-
averaged local density of states and the current density in
four-terminal devices under a periodic drive in the nonequi-
librium Green-function formalism. In Sec. III, we analyze a
typical four-terminal transport setup and calculate all relevant
quantities through a recursive Floquet Green-function algo-
rithm built on top of the KWANT toolbox [58]. We conclude in
Sec. IV.

II. MODEL AND METHODS

To describe the electronic properties of the time-
periodically strained α-T3 lattice, we consider the following
tight-binding Hamiltonian (h̄ = 1)

Hα (t ) = −
∑
〈i j〉

Ji j (t )a†
i b j − α

∑
〈i j〉

Ji j (t )c†
i b j + H.c., (1)

where a(†), b(†) and c(†) create (annihilate) an electron on
Wannier sites A, B, and C, respectively. In the α-T3 lattice,
an additional site C is placed at the center of each hexagon
formed by the A and B sites. This site couples to the B sites via
αJi j (t ), which allows for an interpolation between graphene
(α = 0) and the dice lattice (α = 1). In the unstrained lattice,
the nearest-neighbor hopping is Ji j = J and the α-T3 lattice

FIG. 1. (a) Four-terminal setup with a dynamic Gaussian defor-
mation (3) in the center oscillating with frequency �. The parameters
are h0 = 8 nm, σ = 10 nm, and W = 20 nm. Semi-infinite leads
(red) attached to the Hall bar region are modeled by the pristine
tight-binding Hamiltonian, i.e., Ji j = J . For the coupling between the
Hall bar and the leads, we take Ji j = J also. To create the system
numerically, we use the KWANT library [58]. (b) Comparison of the
Fourier components of the time-dependent transfer amplitudes for
representative values of zi j , and m = 0, 1, 2. The static Ji j (t = 0)/J
case is also showcased. The horizontal line denotes J = 0. [(c) and
(d)] (Zoomed-in) Pseudomagnetic and pseudoelectric field at, re-
spectively, t = 0 and t = T/8 due to the time-periodic oscillating
Gaussian bump from (a) with � = 0.25J for electrons in the K
valley.

features a graphene-like band structure with an additional
dispersionless band at zero energy [28].

The out-of-plane lattice distortion h(r, t ) alters the site
positions r′

i(t ) = ri + h(ri, t )ez [cf. Fig. 1(a)], thereby vary-
ing the bond length di j (t ) = |r′

i(t ) − r′
j (t )| between nearest

neighbors. The modified transfer amplitude is given by

Ji j (t ) = J exp{−β(di j (t )/a − 1)}, (2)

where β = −∂ ln J/∂ ln a is the Grüneisen parameter with a
denoting the (unstrained) nearest-neighbor distance.

In this work, we look upon a temporal oscillating Gaussian
bump

h(r, t ) = h0 cos(�t ) exp (−r2/σ 2), (3)

where r is the radial distance from the center, and h0 and σ

denote the bump’s height and width, respectively. The Gaus-
sian deformation is assumed to be periodic in time, h(r, t +
T ) = h(r, t ), where T is the oscillation period and � = 2π/T
the corresponding frequency. Note that since h(r, t )2 enters
Eq. (2), Ji j (t ) [and thereby H (α)(t )] has a periodicity of T/2
(frequency of 2�) instead.

We expand Eq. (1) in a Fourier series, Hα (t ) =∑
m ei2m�t H (m)

α , with the Fourier coefficients given by
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H (m)
α = 2

T

∫ T/2
0 ei2m�t Hα (t ) dt . Rewriting Eq. (2) as Ji j (t )/J =

exp g(zi j, t ), where g(zi j, t ) = −β(
√

1 + zi j cos2 �t − 1), we
can expand Eq. (2) with respect to the (squared) height differ-
ences between nearest neighbors,

zi j = h2
0

a2

(
e−r2

i /σ 2 − e−r2
j /σ

2)2
, (4)

in a Taylor series around the pristine case zi j = 0. Then, using
Faà di Bruno’s formula, we obtain

Ji j (t )/J =
∞∑

n=0

n∑
k=0

Bn,k (t )
zn

i j

n!
, (5)

where

Bn,k (t ) = βk (−1)n

2n
cos2n(�t )[2(n − k) − 1]!!

(
2n − k − 1

2(n − k)

)

(6)

denotes the partial Bell polynomials of the second kind for the
nth derivative of exp g(zi j, t ) at zi j = 0 [59]. Due to

cos2n(�t ) = 1

22n

{
n−1∑
l=0

2

(
2n

l

)
cos[2(n − l )�t] +

(
2n

n

)}
,

(7)

[60], the Fourier coefficients of the time-dependent Hamilto-
nian

H (m)
α = −

∑
〈i j〉

J (m)
i j a†

i b j − α
∑
〈i j〉

J (m)
i j c†

i b j + H.c. (8)

become

J (m)
i j /J =

∞∑
n=|m|

n∑
k=0

Bn,k (0)

(
2n

n − |m|
)

1

22n

zn
i j

n!
. (9)

Note that the series in Eq. (5) has a convergence radius of 1,
which corresponds to a strained bond length di j = √

2a. Since
graphene is known to sustain up to 25% [8] of elastic strain
(zi j = 0.5625), any physical deformation can be correctly de-
scribed. The dependence of the different Fourier components
on the driving amplitude h0 is depicted in Fig. 1(b), where
we show Eq. (9) for m = 0, 1 and 2 as a function of the
expansion parameter zi j ∝ h2

0. We also plot the static hopping
parameter (t = 0) from Eq. (2). Due to time-averaging, J (0)

i j /J
is increased compared to the static Gaussian bump. Clearly, zi j

(h0) directly controls the magnitude of J (m)
i j . If zi j is constant,

J (m)
i j decreases exponentially with m.

Dynamic elastic strain results in a time-dependent
pseudoelectromagnetic vector potential Aps = (ReAps, ImAps)
[1,61,62], where

Aps(ri, t ) = 1

evF

3∑
j=1

Ji j (t )e−iK·δ′
i j (10)

and the sum is taken over the nearest neighbors. K denotes the
corner of the Brillouin zone and δ′

i j = r′
i − r′

j is the strained
nearest-neighbor vector. The PMF is then Bps = ∇×Aps and
the PEF is Eps = −∂Aps/∂t . The PMF and PEF induced by
oscillating Gaussian strain for electrons in the K valley is

depicted in Figs. 1(c) and 1(d). For electrons in the K′ val-
ley, the signs of the PMF and PEF are reversed. To study
the transport properties of the temporal oscillating Gaussian
bump with regard to its valley-filter capabilities, we use the
four-terminal setup shown in Fig. 1(a). The DC transmission
of electrons originating from the left lead (L) to the right lead
(R) is given by [63,64]

T (E ) =
∑
k∈Z

Tr
[
Gr

k0�
L
00Ga

0k�
R
kk

]
, (11)

where Gr(a)
k0 denotes the retarded (advanced) Green function

in Floquet basis. �
L(R)
kk = i[	r

L(R) − (	r
L(R))

†]kk is the level-
width function of the left (right) lead in Floquet representation
and 	r

L(R) denotes the respective self-energy in Floquet rep-
resentation, i.e., (	r

L(R))km = δkm	r
L(R)(E + 2k�). The trace

(Tr) is taken over all sites in the Hall bar region.
The retarded Floquet Green function Gr

mn is defined by [65]∑
m∈Z

[
(E + iη + 2k�)δkm − H (k−m)

α − (	r )km
]
Gr

mn(E ) = δkn,

(12)

where (	r )km denotes the sum over the four lead self-energies
in Floquet representation, and iη is a small complex number
guaranteeing convergence in the numerical matrix inversion.
After truncating Eq. (12) at finite m ∈ [−M, M], we apply
the recursive Green-function algorithm for Floquet systems
[66,67] and split the four-terminal setup by a circular slicing
scheme [68]. Thereby, systems with up to 150 000 lattice sites
with M = 6 are accessible, which is not feasible by direct
matrix inversion.

In order to study the valley-filtering, we choose zigzag
boundaries for the left and right lead of the Hall bar to
have well-separated valleys in momentum space and the self-
energy can be projected, respectively, onto the K or K′ points,
i.e., 	r

R = 	
r,[K]
R + 	

r,[K′]
R . Then,

T [K](E ) =
∑
k∈Z

Tr
[
Gr

k0�
L
00Ga

0k�
R,[K]
kk

]
(13)

gives the transmission of electrons originating from the left
lead into the K states of the right lead and we can define the
valley polarization

τ [K] = T [K]/T . (14)

For incidents along the armchair direction, i.e., from the top or
bottom lead [cf. Fig. 1(a)], the Gaussian bump acts as a valley-
beam splitter instead [12], which would necessitate a different
lead configuration [23,69]. In addition, the spatial distribution
of the time-averaged local density of states (LDOS) on site i
in Floquet basis,

T-LDOS(E )i = − 1

π
Im

(
Gr

00

)
i,i(E ), (15)

gives valuable insight into excited states inside the Gaus-
sian bump, quite similar to the static case, where one
has LDOSi(E ) = − 1

π
Im Gr

i,i(E ). The T-LDOS can be effi-
ciently calculated by the kernel polynomial method [70,71].
Furthermore, the Keldysh equation connects the retarded
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Floquet-Green function with the lesser Floquet-Green func-
tion in Floquet representation [72,73],

G<
mn(E ) =

∑
kl

Gr
mk (E )	<

kl (E )Ga
ln(E ), (16)

where 	<
kl = i

∑
p �

p
kl (E ) f p and f p = 1/1 + exp{(E −

μp)/kbT } denotes the Fermi-Dirac distribution of an
individual lead p with chemical potential μp = E + eVp/2,
and Vp is the applied bias voltage. Then, the time-averaged
and energy-resolved current density between site i and site j
is given by [66]

Ii j (E ) =
∑
k∈Z

J (k)
i j [G<

0k]i j (E ). (17)

III. RESULTS

In our numerical calculations, we take the system pa-
rameters given in Fig. 1, as well as the (graphene-like)
values a = 0.142 nm, β = 3, and J = 2.8 eV for the tight-
binding model [11], unless otherwise specified. Let us first
comment on the frequency dependency in the off-resonant
case. Here, the time-reversal symmetry is intact and the
time-averaged Hamiltonian H (0)

α dominates the dynamics be-
cause the first-order corrections, [H (m)

α , H (−m)
α ], vanish in the

Floquet-Magnus expansion [74]. Concomitantly, the coupling
between the Floquet sidebands is weak [cf. Fig. 1(b)], necessi-
tating frequencies smaller than the bandwidth to ensure a large
overlap between neighboring sidebands. For the parameters
used, we take J (m)

i j up to m = 3 since zi j � 0.5 [cf. Fig. 1(b)]
and M = 5 in the Floquet space to assure convergence of the
truncation scheme.

Figures 2(a), 2(b), and 2(c) show the transmission T of
electrons originating from the left lead moving to the right
lead and their valley polarization τ [K] for graphene (α = 0),
the intermediate 1/

√
3-T3 lattice, and the dice lattice (α = 1),

respectively. The main feature of the static bump is an al-
most complete valley polarization of the transmitted electrons
stemming from the excitation to α-dependent strain-induced
Landau levels leading to “flowerlike” LDOS patterns inside
the deformed region [10,11,13,56]. One of the main caveats is
the reduction in valley polarization of the output current with
increasing energy since the main contribution comes from the
lowest energy band [13].

For the graphene case [cf. Fig. 2(a)], we notice two char-
acteristic transport regimes, for E < � and E 	 �. Starting
with E < �, we observe a plateau in the valley polarization up
to E 	 0.3 eV with finite transmission because, in this energy
range, only the valley-polarized zigzag edge band is occupied
[18]. At higher energies up to E = �, the valley polarization
decreases since higher bands are populated [13]. Moreover
the transmission is suppressed near E � �, indicating a gap
at edge of the first Floquet zone. We found this Floquet gap
irrespective of the applied frequency (below the bandwidth).
Exactly at E = �, we see an abrupt onset in the transmission
with almost perfect valley polarization [τ [K] 	 0.9] at the
m = 0 and m = 1 zone boundary. This is quite contrary to
the static case, where an increase in the energy will lower the
valley polarization.

FIG. 2. [(a)–(c)] Transmission and valley polarization in depen-
dence of (quasi) energy for an oscillating Gaussian bump in a α-T3

lattice for α = 0, 1/
√

3 and 1, respectively. Vertical dashed lines
denote E = � and E = 2�. The resonances at energies E 	 1.31,
	 1.31, and 	 1.27 eV are marked by (1), (2), and (3), respectively,
where we find τ [K] = 0.4, 0.75, and 0.75.

In the intermediate case α = 1/
√

3, an additional trans-
port channel emerges around E 	 2� [cf Fig. 2(b)] related
to the flat band, besides the valley plateau at E = � and
the static-like regime E < �. For energies below a thresh-
old of 0.2 eV, the bump will block any current due to the
large PMF inside. Above this threshold, the transmission
features valley-polarized resonances with the characteristic
six-fold symmetric (T-)LDOS pattern indicative of the static
case. Near E = �, we notice a similar Floquet gap with a
valley-polarization plateau, albeit slightly reduced. Around
E 	 2�, we notice that the transmission vanishes (is greatly
suppressed) exactly at (near) the m = 1 zone center at E = 2�

(E = 2� ± 0.1 eV). Here, the flat band of the m = 1 Floquet
sideband hybridizes with the central m = 0 band, and all states
at this energy become localized [cf. discussion of Figs. 3(h)
and 3(i) below]. Since flat bands—due to their zero group
velocity—do not carry any current, the transport is completely
blocked. Regrettably, the numerical accuracy at the flat band
heavily influences the value of the calculated polarization. We
also verified that no current is transmitted into top/bottom
leads, confirming the complete blocking of any transport. The
transmission gap of width  	 0.18 eV around E = 2� is
symmetric in the energy, which is a result of the particle-
hole symmetric sidebands. Away from this gap we observe
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FIG. 3. (Zoomed-in) Time-averaged local density of states (T-LDOS) at energies E = � [(a)–(c)], resonances (1–3) in [(d)–(f)] and
E = 2� [(g)–(i)] for graphene (α = 0), the 1/

√
3-T3 lattice and the dice lattice (α = 1), respectively.

a small band of transmission resonances around E 	 1.31 eV
[cf. (2) in Fig. 2(b)] with a particular high degree of valley
polarization τ [K] 	 0.75. We will see that this is due to the
PEF, see discussion of Figs. 3(e), 3(f), and 4(b) below.

For the dice lattice [cf. Fig. 2(c)], we can again identify the
two characteristic transport regimes, E < � and E 	 2�, of
the α = 1/

√
3 model, which obviously interpolates between

graphene and the dice-lattice physics. Accordingly, as nec-
essary conditions for the different regimes, we find: When
α < 1, a valley-polarization plateau is induced around E 	 �,

while in the case of α > 0, the model features flat-band states
at E = 2� with highly valley-polarized states at the edges of
the transmission gap.

To fix the signatures of these effects and contrast them with
those of the static transport channels, in Fig. 3 we plot the
time-averaged LDOS for E = �, resonances (1)-(3) and E =
2� for α = 0, 1/

√
3 and 1, respectively.

At E = �, the T-LDOS for α = 0 (α = 1/
√

3) fea-
tures the sixfold (threefold) symmetric T-LDOS pattern
confined to the lobes of the PMF displayed in Fig. 1(c),
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FIG. 4. (Zoomed-in) Time-averaged current density profile I at energies E = � (a), resonances (2) in (b) and E = 2� (c) for graphene
(α = 0), the 1/

√
3-T3 lattice and the dice lattice (α = 1), respectively.
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while the T-LDOS almost vanishes in the dice lattice case
[cf. Figs. 3(a)–3(c)].

For resonances (1)–(3) [cf. Figs. 3(d)–3(f)], we notice for
α > 0 that the incoming electrons are confined to the center
instead of mirroring the profile of the PMF. We attribute this
to the PEF displayed in Fig. 1(d), which drives the incoming
electrons residing in the K valley to the low field region
inside the bump, while electrons in K′ valley—feeling the op-
posite field—are pushed away, thereby effectively polarizing
the transmitted electrons [see discussion on Fig. 4(b)]. This
feature is characteristic for the series of resonances around
(2) and (3) [and also Fig. 7 around (1)]. The time-averaged
LDOS at E = 2� in Fig. 3(h), 3(i) shows a highly degenerate
state restricted to the Gaussian bump [cf. the color-map scale],
which is in contrast to the flat band state at E = 0, where
the LDOS is spread over the whole lattice instead. In fact,
the LDOS diverges at E = 2�, which indicates a flat-band
like state. In the numerics, we have added a small imaginary
part to the energy (η = 10−5) to guarantee convergence of the
matrix inversion. This effect occurs at E = 2m�, where m =
0,±1,±2, . . . The spectral weight increases with increasing
h0 and 1/m. In the graphene case shown Fig. 3(g), the flat band
is decoupled and the T-LDOS vanishes in accordance with the
transmission calculations [cf. Fig. 2(a)].

Figures 4(a), 4(b), and 4(c) provide the local (time-
averaged) current densities, indicating the dynamical effects,
at E = �, resonance (2) and E = 2�, for α = 0, 1/

√
3, and

1, respectively, where a small bias is applied between the left
and right lead. The magnitude is decoded by the blue intensity,
and the arrows denote the direction of the electron flow. The
static-like nature of the system at E = � becomes particularly
apparent in Fig. 4(a), where the incoming stream of electrons
is encircling the (distorted) lobes of the PMF, nicely represent-
ing the behavior of the T-LDOS [cf. Fig. 3(a)]. The situation
for resonance (2) [cf. Fig. 4(b)] is much different, because,
here, the PEF focuses a small part of the electron flow through
the bump along the x axis before exiting the scattering region
through lead R. The majority of the electron flow is blocked
and leaves the scattering region via the top and bottom lead,
see Fig. 4(b). Recalling the corresponding valley polarization
in Fig. 2(b), we can conclude that the transmitted stream con-
sists primarily of K electrons. The density profile at E = 2�

displays a large amount of current trapped inside the bump
[cf. Fig. 4(c)], thereby blocking any transmission through the
setup. To assess the stability of the valley-polarized states near
E 	 � and E 	 2�, in Fig. 2(b), we provide a contour plot of
the valley polarization as a function of the energy E and the
bump height h0 in Fig. 5 around E = 2� (top) and E = �

(bottom). We again choose α = 1/
√

3 as this system best
interpolates between graphene and the dice lattice. We omitted
h0 < 5 nm since the amplitude, which directly controls the
interband coupling between the Floquet copies [cf. Fig. 1(b)],
is too weak in this case. In both cases, the regions of high
valley polarization are robust for a wide range of amplitudes
h0 and we can identify h0 � 6 as the optimal regime for
polarization. While the polarized resonances around E 	 2�

depend almost linearly on h0, the valley polarization reaches
nearly unity around E 	 � for large h0 	 9 nm.

So far, in order to avoid problems with the rapidly increas-
ing dimension of the Floquet space, we worked at a rather
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FIG. 5. Contour plot of the valley polarization for the α = 1/
√

3
lattice as a function of E and h0 for an oscillating Gaussian bump.
Horizontal dashed lines mark E = 2� and E = �, respectively.

large driving frequency. To demonstrate that the discussed
valley-polarization effects persist for smaller frequencies, in
Fig. 6, we show the valley polarization in the �-E plane for
the 1/

√
3 lattice. Obviously, the valley-polarized regimes in-

duced by the dynamical strain for E = � and E 	 2� appear
down to at least � = 0.1J , albeit being slightly reduced. The
static-like regime E < � deteriorates when � < 0.2J through

FIG. 6. Contour plot of the valley polarization in dependence
on (quasi) energy and driving frequency for an oscillating Gaussian
bump on the intermediate 1/

√
3 lattice. The energy range is limited

by the Van Hove singularity E = J (=2.8 eV) since the valley degree
of freedom can only be defined up to this point. Dashed lines mark
E = m� for m = 1, 2, 3, and 4, respectively.
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Here, the Hall bar has W = 30 nm. Vertical dashed lines mark E = �

and E = 2�.

the overlap with E = � polarization regime. The gap 

around E = 2� with the valley-polarized states [cf. Fig. 2(b),
resonance (2)] persists until  = 2�, i.e., when the reso-
nances will be located outside the first Floquet zone. Since the
discussed frequency range 34–225 THz (� = 0.05J–0.33J)
could not be expected to be realized in graphene-based nano-
electromechanical resonators [26,27], we rather envision an
implementation of the α-T3 lattice in optical lattices, where
dynamical strain also could be realized [75]. The main ad-
vantage of this route is, besides having direct access to the
scaling paramter α, that the transfer amplitudes can be freely
manipulated [76,77].

Finally, let us comment on the system-size dependence
of our results. Figure 7 gives the transmission and valley
polarization for a dice-lattice Hall bar with W = 30 nm, which
corresponds to 1.5×105 sites and a 50% increase in the lead’s
width. We take h0/σ = 0.8 and σ/W = 0.5 as in Fig. 1, i.e.,
h0 = 12 nm and σ = 15 nm. The driving frequency remains
� = 0.25J . We find a pronounced band of resonances around
(1) E 	 1.3 eV, where the valley polarization reaches almost
unity. We note that the observed effects weaken when we
analyze smaller systems (not shown). In any case, it is im-
portant that the use of larger system sizes enhances the valley
polarization and the corresponding resonances near E = 2�,
which means that our results should be robust in the thermo-
dynamic limit, i.e., for real-world devices. This is in accord
with the arguments presented in Ref. [19], where the authors
estimated the number of pseudo-Landau level subbands by
counting the iso-field orbits that enclose an integer magnetic
flux. By increasing W , the inhomogeneous PMF is spread over
a larger region, thereby increasing the number of iso-orbits
(and resonant states). Although the nature of driving-induced

valley-polarized states differs in our case, a similar mecha-
nism is at work.

IV. SUMMARY

In this paper, we have shown how a time-periodic modula-
tion of strain-induced Gaussian bumps allows for engineering
the transport properties in α-T3 lattice Hall bars. To be
more specific, we demonstrated the appearance of novel
valley-polarized states and flat bands tunable by the driv-
ing frequency and the scaling parameter α. We discussed
the role of the pseudoelectromagnetic fields in time-periodic
Gaussian bumps in terms of analytical expressions for the
time-dependent transfer amplitudes. Using the recursive Flo-
quet Green-function algorithm with a circular slicing scheme,
we obtained and examined the DC transmission, valley po-
larization, and the spatial distribution of the time-averaged
local density of states and the current density profile in a
four-terminal device. Depending on the scaling parameter
α, we identified two transport regimes with distinct valley-
polarization responses caused by the dynamic strain. For
α < 1, we detected a second plateau in the valley polarization
at the boundary of the central and first Floquet sideband. In the
time-averaged LDOS, we found a revival of the static “flow-
erlike” pattern mirroring the shape of the pseudomagnetic
field due to the incoming electron flow with K polariza-
tion encircling the lobes of the external field. In the case of
α > 0, we noticed a vanishing transmission at about 2m�,
which could be related to the flat bands of higher sidebands
coupled to states in the zeroth sideband. The corresponding
time-averaged LDOS pattern revealed a substantial spectral
weight spread inside the bump, blocking any current through
the device due to the zero group velocity of these flat-band
states. In the vicinity of this transmission “gap,” we found
highly valley-polarized resonances where the incoming (K-
polarized) electrons are focused along the zigzag orientation
through the Gaussian bump by the pseudoelectric field. We
confirmed that above a threshold amplitude of the out-of-
plane oscillation, the device facilitates valley filtering of the
incoming electrons in both regimes, E 	 � and E 	 2�, with
different scaling behaviors. We enhanced the valley-filter effi-
ciency and the resonance structure by considering larger sys-
tem sizes. While previous works on nanodrums mainly exam-
ined the adiabatic limit, we here focused on a high-frequency
regime and numerically studied the influence of the external
field dynamics on transport. We found pronounced effects
of the PEF, e.g., α-dependent Floquet gaps, novel valley-
polarized states where the incoming electrons are focused,
and flat-band states. Since Gaussian bumps in α-T3 lattices
have promising valley-filtering capabilities in the adiabatic
and anti-adiabatic limit, we believe that observed behavior is
“generic”, i.e., the used high frequencies are not a restraint.
Moreover the proposed setup should be realizable in optical
lattices, according to their tunability of hopping amplitudes.
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ABSTRACT
Flat bands can be divided into singular and non-singular ones according to the behavior of their Bloch
wave function around band-crossing points in momentum space. We analyze the flat band in the Dice
model, which can be tuned by a uniaxial strain in the zigzag direction and a Haldane-type next-nearest
neighbor interaction, and derive the topological phase diagram of the modified Haldane-Dice model
to obtain all band-gap closings with the central band flat. We determine the compact localized state
and classify the behavior of the flat band at all band-crossing points according to the quantum distance
of its Bloch wave function. We find that the flat band remains singular for all band-touching points
(topological phase transitions) with a maximal quantum distance and give expressions for the resulting
non-contractible loop states on the real-space torus.

1. Introduction
Flat bands are dispersionless, i.e., have constant energy

throughout the entire Brillouin zone, implying that their
charge carriers have zero group velocity (or infinite effective
mass) and a diverging density of states [1–3]. Because of
the quenched kinetic energy, the charge carriers are then
dominated by the electron-electron interaction, making flat-
band systems an ideal platform to study the fractional quan-
tum Hall effect [4, 5], superconductivity [6, 7], and Wigner
crystallization [8]. Experimentally, various systems with
perfectly flat energy bands have been accomplished in, e.g.,
optical [9, 10] and photonic lattices [11–13] or metamateri-
als [14].

The perfectly localized eigenstates of the flat band can
be used for the classification of flat bands and their gen-
erators [15–18]. Due to the destructive interference, these
compact localized states (CLS) have nonzero amplitude only
inside a finite real-space region and remain intact under
time-evolution [16, 19–21]. The basis of an isolated flat band
in a lattice ofN unit cells is spanned by theN linearly inde-
pendent CLS generated by lattice translations. In the class of
singular flat bands, however, this set is linearly dependent on
a real-space torus (periodic boundaries) because dispersive
bands cross the flat band in the Brillouin zone. Therefore
the set of all CLS must be complemented by so-called non-
contractible loop states (NLS), which extend around the
torus along one spatial direction while being localized along
the other and cannot be smoothly deformed by the CLS [21,
22]. The existence of CLS and NLS have been demonstrated
for photonic Lieb and Kagome lattices [11–13, 23, 24].
Interestingly, the band crossing point is directly related to
an immovable singularity in the Bloch wave function of
the flat band in momentum space [3, 21] and is measured
by the maximum Hilbert-Schmidt quantum distance [25].
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fehske@physik.uni-greifswald.de (H. Fehske)
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This has direct consequences for systems with quadratic
band-touching points, giving rise to anomalous Landau lev-
els [26] and boundary modes through the bulk-interface
correspondence [25]. The full quantummetric tensor, whose
real part is the quantum distance, has recently attracted a
lot of attention in the context of superconductivity [27–29],
the geometric orbital susceptibility [30], and the dc linear
conductivity [31].

Historically, the Dice (or 3) lattice [19, 32, 33], a
honeycomb lattice with an extra atom C placed in the center
of each hexagon and coupled to only one of the sublattices
A or B [cf. Figure 1(a)], is perhaps the earliest example of a
flat-band system. The spectrum of the Dice model consists
of a strictly flat band, crossing the respective Dirac cones
around the K and K ′ points inherited from graphene’s band
structure.

The chiral flat band has been shown to be stable against
perturbations of the transfer amplitude like strain, magnetic
fields, or boundary conditions due to the bipartite nature of
the lattice and plays only a secondary role for the single-
particle transport properties [19, 34–40], but its geometry
and composition have not yet been discussed in detail.

In this paper, we address these issues, analyzing the Dice
model under a uniaxial strain along the zigzag orientation
with a Haldane-type next-nearest neighbor (NNN) interac-
tion. The uniaxial strain breaks the threefold rotational (3)symmetry and trimerizes the model along the y-axis. The
Haldane term breaks time-reversal symmetry without a net
flux and drives a topological phase transition to Chern insu-
lator in the Dice model characterized by the Chern number
c = ±2 [41–43]. By studying the quantum distance in the
vicinity of the band-crossing points at the phase transition
of the suchlike modified Haldane-Dice model, we show that
the singularity of the flat band is related to its geometry. We
confirm this by showing that the set of the CLS is linearly
dependent and presenting expressions for the NLS.
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Figure 1: (a) Modified Haldane-Dice model with basis {A, B, C} and Bravais lattice vectors a1 = (−
√
3∕2, 3∕2) and a2 =

(
√
3∕2, 3∕2). The NN vectors connecting the B sites with C sites are given by �1 = (

√
3, 1)∕2, �2 = (−

√
3, 1)∕2 and �3 = (0,−1).

(b),(c) Band structure along the high-symmetry directions with a Haldane flux � = 0.3� at the topological phase transition
mc(�, �) of Equation (5) between two valence-gapped phases for � = 0.6 (a) or between two conduction-gapped phases � = −0.6
(b). The vertical dashed line denotes the band-crossing point kc in the Brillouin zone. Horizontal dashed lines denote the maximum
and minimum of the central band.

2. Modified Haldane-Dice model and phase
diagram
We start by introducing the Hamiltonian of the modified

Haldane-Dice model (MHDM),

H� =

[
1√
2

∑
⟨i,j⟩

tijc
†
i cj +

∑
⟨⟨i,j⟩⟩

t2,ije
−i�ij�c†i cj + h.c.

]

+ m
∑

�ic
†
i cj , (1)

obtained by applying uniaxial strain along the x direction.
Here, the nearest-neighbor (NN) transfer amplitudes are
tij = t along the ±�3 direction and tij = �t along the
±�1 and±�2 direction [cf. Figure 1(a)]. The NNN couplings
acquire an alternating magnetic phase accounted for by the
sign �ij=1 (−1) when the hopping between A-A and C-
C is clockwise (anti-clockwise). The NNN hoppings in the
B sublattice are suppressed [42]. The value of the NNN
transfer is t2,ij = �t2 [t2] along a3 = a1 + a2 [a1 and
a2]. By making the NN and NNN couplings unequal, the3 rotational symmetry is broken. The inversion-symmetry
breaking on-site potential (Semenoff mass) is denoted by m,
where �i = 1, 0, −1when i refers to theA, B or C sublattice,
respectively. Throughout this work, we consider � ∈ [−1, 1].
In momentum space, the Hamiltonian becomes

H�(k) = 2t2ℎ
�
0(k) cos(�)S0 +

[
m − 2t2ℎ�z(k) sin(�)

]
Sz

+ tf�(k)Sx , (2)
where

f�(k) = �
(
eik⋅a1 + eik⋅a2

)
+ 1 ,

ℎ�0(k) = � cos(k ⋅ a3) + cos(k ⋅ a2) + cos(k ⋅ a1) ,
ℎ�z(k) = � sin(k ⋅ a3) + sin(k ⋅ a2) − sin(k ⋅ a1) . (3)

In Equation (2), the matrices Sx, Sz are the usual spin-1
matrices, and S0 = diag(1, 0, 1).

To determine the topological properties of the MHDM,
we consider the Chern numbers for each band n [44],

cn =
1
2� ∬BZ

Ω(n)(kx, ky) dkx dky, (4)

where Ω(kx, ky) =
[
∇k × A(n)

]
z is the Berry curvature,

A(n) = ⟨un(k)|i∇k|un(k)⟩ is the Berry connection, and
|un(k)⟩ denotes a Bloch state.Although the gap-closings are identical to that of the
modified Haldane model of graphene [45], the situation
is slightly different due to the three-band character. Here,
the finite NNN transfer generally distorts the central band,
only a Haldane flux of �c = (2n + 1)�∕2 with integer
n restores the flatness [42]. In this case, the flat band has
always c = 0 [46]. Therefore, the band structure of the
MHDM differentiates between the valence-band gapped,
conduction-band gapped, and all-band gapped phases. For
example, the valence-gapped phase has a direct gap between
the central band and the valence band and an indirect overlap
between the central band and the conduction band. Fig-
ure 1(b) [(c)] displays the band structure of theMHDMat the
phase boundary between two valence-band gapped phases
[conduction- band gapped phases]. In Figure 2, we show the
Chern numbers obtained by the discretized Brillouin zone
method of Fukui et al. [47] for the valence band in the
valence-band and all-band gapped phases or for valence and
flat band in the conduction-band gapped phase. For Fermi
energies inside the indirect gap, the overlapping central
and conduction/valence band gives the system a metallic
character [cf. Figure 1(b) and (c)].

In the unmodified case (� = 1), the system undergoes
a topological phase transition from a Chern insulator with
c = ±2 to a trivial insulator when mc = ±3

√
3 sin� [42].

The band-gap closing occurs at the K or K ′ points since
the Hamiltonian in Equation (2) is 3 symmetric [42]. For
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Figure 2: (a) Phase diagram of the modified Haldane-Dice model. The Chern numbers are displayed for the valence or valence
and flat band. (b) Variation of the band crossing in the Brillouin zone for positive mc in dependence on �.

� ∈ [−1, −0.5) ∪ (0.5, 1], we find that the surface

mc(�, �) = ±3t2 sin�

√
4 − 1

�2
(5)

describes the gap-closing/reopening in the parameter space,
separating the Chern-insulating phase of the MHDM with
c = ±2 from a trivial insulator.

To understand the gap opening in terms of the strain, we
monitor the position of the band crossings in the Brillouin
zone. On the surface given by Equation (5), the MHDM
has one or two band-crossing points depending on the time-
reversal symmetry. For � = �c , the system is a semimetal
that hosts one pseudospin-1Dirac node in the Brillouin zone.
The presence of time-reversal symmetry (� = 0, �) enforces
the appearance of two band-crossing points. In all cases, the
position of the Dirac nodes depends merely on �. We find
that the conduction or valence band touches the central band
at kc =

[sgn(mc)k�x, k�y
], where

k�x =
2√
3
arccos 1

2�
− Θ

(1
2
− �

) 2�√
3

(6)

and k�y = 2�∕3 for � ≥ 1∕2 and k�y = 0 for � ≤ −1∕2,
respectively. The position of the band-crossings kc is locatedon the symmetry-invariant linesK ′−M−K andK1−Γ−K ′

1[cf. Figure 1(b) and (c)], and depends on the � parameter
as illustrated in Figure 2(b) for positive mc . By reducing
� → 1∕2, the 3 symmetry is broken and the Dirac node
is no longer pinned to the symmetry point K and moves to
M . At � = 1∕2, the two Dirac nodes merge at theM point
and gap out. The MHDM remains gapped for smaller � due
to the trimerization. For � = −1∕2, the Dirac node reappears
at the Γ point andmoves towards theK1 point when � → −1.

3. Singular band touchings
To determine whether the flat band is singular, we eval-

uate the Hilbert-Schmidt quantum distance [48]
d(k1,k2) = 1 − |⟨ΨFB(k1)|ΨFB(k2)⟩|2 (7)

of the flat-band eigenstates in the vicinity of the band-
touching points. Typically, the quantum distance vanishes
for two eigenstates that are arbitrarily close to each other.
In the singular case, however, this quantity is nonzero for
|k1 − k2| → 0 [26]. The maximum value of the quantum
distance dmax has been recently taken as a measure of the
singularity of the band-crossing point, where any dmax > 0implies the linear dependence of the CLS and the existence
of NLS [3, 25, 26].

Let us now inspect the geometric properties of MHDM
when the central band is flat, i.e., E = 0 [�n = (2n +
1)�∕2] at the phase transitions curves m = mc(�, �n) [cf.Figure 3(a)]. In the following, we will show that a nonzero
dmax also implies a singular flat band for Dirac semimetal
phases. The eigenstate of the flat band in these cases is given
by

|ΨFB(k)⟩ =k

⎛⎜⎜⎝

f�(k)
−(mc − 2t2ℎ

�
z(k))

−f�(k)∗

⎞⎟⎟⎠
, (8)

where k =
{
2|f�(k)|2 + (mc − ℎ�z(k))2

}−1∕2 is the nor-
malization constant. In general, the value of d(k1,k2) de-pends on how we approach the singular point kc . Thereforewe use the parameterization k1∕2 = kc+q1∕2(cos �q1∕2 , sin �q1∕2 )and first consider � ≠ ±1∕2. In this case, we have mc −
2t2ℎ

�
z(k1∕2) = 0 in the vicinity of kc and the quantum

distance for small q1∕2 is given by

d(k1,k2) = sin2
(
Θk1 − Θk2

)
, (9)
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Figure 3: (a) Chern numbers in the Dirac semimetal phase
(� = �∕2) for the valence band. (b) Real-space distribution of
the (unnormalized) compact localized state on the Dice lattice,
where the squared site symbols denote its nonzero amplitude.
The NNN couplings are not drawn for better visibility.

whereΘk = i log f�(k)∕|f�(k)|. This is similar to neglecting
the NNN interaction. However, at � = ±1∕2, mc(� =
±1∕2) = 0, the full wave function has to be used which
affects the angular dependence but not its maximum value.
In the limit q1∕2 → 0, we find the unit maximum quantum
distance dmax = 1 for, e.g., �q1 = �∕2 and �q2 = (2j + 1)�for integer j and independent of �.

At this point, we like to note that in the closely related
�-3 model [49], the parameter � interpolates between the
honeycomb lattice (� = 0) with a decoupled flat band and
the Dice lattice (� = 1) rescaling the hoppings between
B and C sites by �. In this case, we find d(k1, k2) =
sin2(Θk1 − Θk2 ) sin

2 2' with tan� = �. Thereby, the
resulting dmax = sin2 2' is a direct measure for the interband
coupling between the flat band and the Dirac nodes.

To confirm the predictions by the maximal quantum
distance, we consider a (Dice) lattice of N unit cells with
�0 = �∕2 and m = mc(�, �0), i.e., the MHDM where the
conduction and valence band touch the perfectly flat band
at kc . We construct the compact localized state of the flat-
band states by combining all Bloch wave functions into new
eigenfunctions,

|�(R)⟩ = ∑
k∈BZ

�ke
−ik⋅R|ΨFB(k)⟩, (10)

where  is a normalization constant and �k is a smooth
function of the momentum. The Bloch eigenstate can be
brought in the form

|ΨFB(k)⟩ = 1√
N

∑
R′
eik⋅R

′
uk,j|R′, j⟩, (11)

where uk,j is the jth component of the normalized eigenvec-
tor of the flat band. By choosing �k = −1

k , �k|ΨFB(k)⟩is simply a sum of Bloch phases and we directly obtain the
CLS real-space distribution centered around R′,

⟨R′, j|�(R)⟩ = 1√
2 + 6�2 + 4t22 + m

2
c

⋅

⎛⎜⎜⎜⎜⎜⎝

�
[
�R′−R+a1 + �R′−R+a2

]
+ �R′−R

−mc − it2
3∑
i=1
�i
(
�R′−R−ai − �R′−R+ai

)

−�
[
�R′−R−a1 + �R′−R−a2

]
− �R′−R

⎞⎟⎟⎟⎟⎟⎠

, (12)

where the amplitudes are �1 = � and �i≠1 = 1. Figure 2(a)displays the (unnormalized) CLS. Due to the NNN cou-
pling, the CLS of the pristine Dice lattice [19] is extended
by complex amplitudes on the outer B atoms. The addi-
tional nonzero amplitude on the centralB atom compensates
the sublattice-symmetry breaking Semenoff mass. The CLS
|�(R)⟩ can be considered as the extreme limit of localized
Wannier functions [15].

For N unit cells, one would expect N eigenstates with
zero energy from the flat band and two additional states
stemming from the Dirac cone. In a system with periodic
boundary conditions however, we can easily verify that∑
n e

ikcRn |�(Rn) = 0, which renders the set spanned by
all CLS linearly dependent. Thus, we are left with a set
of (N − 1) CLS, quite similar to the pristine case [22].
Therefore, we give expressions for the three missing zero-
energy eigenstates in Figure 4 that complete the set. We
find two NLS that extend along the a3 and a2 direction
(or, equivalently, any two choices of the three ai), whichare displayed in Figure 4(a) and Figure 4(b), respectively.
Each non-contractible loop state consists of a unit plaquette
with nonzero amplitude on its edge sites (dashed box).
The full non-contractible loop state is then generated by
shifting the plaquette and multiplying by a phase factor
exp {ikc ⋅ na3∕2}. For the NLS along a3 and a2, this yields a
phase factor of ei!� and −ei!�∕2, respectively. Additionally,
we find an extended state in Figure 4(c) with nonzero ampli-
tudes only on the B atoms. This state has been overlooked
previously [22].

Finally, let us explicitly demonstrate that the NLS of
Figure 4(a) is an exact eigenstate with zero energy by using
the picture of destructive interferences. First, we consider
theB site with weight−mcei!�∕2∕3 [cf. yellow square inside
dashed box of Figure 4(a)]. Since this B site is only coupled
to its NN [cf. Equation (1)] andH� has no onsite potential on
theB sublattice, applyingH� yields �+�ei!�−ei!�∕2 = 0 onthis site. The remaining hoppings cancel each other, which
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Figure 4: (a),(b) Non-contractible loop states winding along a3 and a2, respectively, around the torus. The phase factor is defined
by !� = 2 arccos(1∕2�). All sites with nonzero amplitude are indicated by squares on the edges of the gray plaquettes. The values
of the amplitudes are given for the unit plaquette (dashed box) and all other plaquettes can be constructed by shifting the unit
plaquette via the phase factor along the arrow. (c) An extended state with nonzero amplitude only on the B sites. The remaining
amplitudes on the B sites are obtained by shifting the nonzero amplitude in the dashed box by the phase factor along the two
arrows.

can be seen by noting that mc = −3it2�(ei!� − e−i!� ) =
−3it2(ei!�∕2 − e−i!�∕2) and collecting the NN and NNN
contributions. Due to translation symmetry, the NLS is then
an eigenstate. Similarly, one can show that the NLS along a2is also an eigenstate.

4. Conclusions
In summary, we studied the Haldane-Dice model with

broken 3 symmetry due to different couplings between NN
and NNN sites particularly with regard to its topological
properties and the geometry of the flat band. In experiments,
this could be realized by applying uniaxial strain to related
systems. We found the same topological phase diagram as
in the modified Haldane model based on graphene, albeit
with an increased Chern number c = ±2. From the phase
diagram, we identified the parameters where the central band
is dispersionless and determined the shape of the Bloch
wave function and composition of the flat band. In particular,
we demonstrated that a nonzero maximum Hilbert-Schmidt
quantum distance around the band-crossing point in the
Dirac semimetal phase directly leads to a linearly dependent
set of all compact-localized states in the torus geometry. In
this case, we found two non-contractible loop states winding
around the torus along the symmetry directions and one
extended state on the torus that has not been reported so far.
Accordingly, the full physical significance of the quantum
metric tensor and quantum distance in this system was open.
In this regard, the �-3 model and its singular flat band is
certainly an ideal platform to study geometric contributions
to interband coupling effects arising from the �-dependent
quantum distance around the band-crossing points.
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