Aus der dem Klinik und Poliklinik / Institut für Zahnerhaltung, Parodontologie und Kinderzahnheilkunde (Direktor/in Univ.-Prof. Dr. G. Meyer) der Universitätsmedizin der Ernst-Moritz-Arndt-Universität Greifswald

Thema: Zusammenhang statischer und dynamischer Okklusionsparameter mit funktionellen Aspekten des stomatognathen Systems

Inaugural - Dissertation zur Erlangung des akademischen Grades Doktor der Zahnmedizin (Dr. med. dent.) der Universitätsmedizin der Ernst-Moritz-Arndt-Universität Greifswald 2014

vorgelegt von:
Sandra Wiegelmann
geboren am: 15.03.1988
in: Hagenow
Dekan: Prof. Dr. med. dent. Reiner Biffar
1. Gutachter: Prof. Dr. med. dent. Olaf Bernhardt
2. Gutachter: Prof. Dr. med. dent. Alfons Hugger
Ort, Raum: Rotgerberstr. 8 in 17489 Greifswald, Hörsaal der Zahnklinik
Tag der Disputation: 06.10.2014
Ich widme diese Arbeit meiner Familie.
Inhaltsverzeichnis

1 Einleitung ... 1

2 Literaturübersicht ... 3

 2.1 CMD .. 3

 2.1.2 Epidemiologie ... 3

 2.1.3 Symptomatik und Klassifikation .. 4

 2.1.4 Ätiologie .. 6

2.2 Okklusion .. 9

 2.2.1 Kondylenposition und Interkuspidation in der Statik ... 10

 2.2.2 Okklusionsschemata in der Dynamik .. 11

 2.2.3 Schlussfolgerung für statische und dynamische Okklusion 12

 2.2.4 Okklusale Störfaktoren ... 13

2.3 Korrelation von CMD und Okklusion ... 15

 2.3.1 Therapeutische Ansätze bei CMD ... 18

3 Aufgabenstellung ... 21

4 Material und Methode ... 23

 4.1 Probandenkollektiv .. 23

 4.2 Untersuchungsverfahren ... 25

 4.2.1 Zahnärztlicher und kieferorthopädischer Befund .. 25

 4.2.2 Klinische Funktionsanalyse ... 28

 4.3 Datenanalyse ... 29

5 Ergebnisse ... 30

 5.1 Beschreibung der Stichprobe ... 30

 5.1.1 Verteilung gemäß soziodemografischer Komponenten 30

 5.1.2 Häufigkeitsverteilungen einzelner Okklusionsparameter 32

 5.1.2.1 Prävalenz nichtkariogener Zahnhalsschäden ... 34

 5.1.2.2 Okklusale Schleifen, Abrasionen und Attritionen 35

 5.1.3 Geschlechtsspezifische Prävalenzen funktioneller Aspekte 36
5.2 Zusammenhänge dentaler und funktionaler Parameter39
 5.2.1 Betrachtung Okklusion und Zahnkontakt mit Funktion39
 5.2.1.1 Aspekt der Eichner-Klassifikation 39
 5.2.1.2 Diagnose kein Kontakt im Seitenzahnbereich 40
 5.2.2 Führungsmuster mit Faktoren der Funktion 41
 5.2.2.1 Laterotrusionsbewegungen 41
 5.2.2.2 Hyperbalancen während Protrusion 42
 5.2.3 Kieferorthopädischer Befund mit funktionellen Aspekten43
 5.2.3.1 In der sagittalen Ebene 43
 5.2.3.2 In der vertikalen Ebene 44
 5.2.3.3 In der transversalen Ebene 44
 5.2.4 Hugoson-Index und keilförmige Defekte 45
 5.2.4.1 Untersuchung gesamtes Probandengut 45
 5.2.4.2 Untersuchung des männlichen Probandenguts 45
 5.2.4.3 Untersuchung des weiblichen Probandenguts 46
 5.3 Multivariate Analysen .. 47
 5.3.1 Reziprokes Kiefergelenkknacken im Querschnitt 48
 5.3.2 Druckdolenz Kiefergelenk im Querschnitt 49
 5.3.3 Reziprokes Kiefergelenkknacken longitudinal 50
 5.3.4 Druckdolenz Kiefergelenk longitudinal 51

6 Diskussion ... 52
 6.1 Methodenkritik .. 52
 6.1.1 Die Stichprobe .. 52
 6.1.2 Klinische Untersuchung der Probanden 54
 6.2 Diskussion der Ergebnisse .. 55
 6.2.1 Diskussion der Ergebnisse von Hypothese 1 55
 6.2.2 Diskussion der Ergebnisse von Hypothese 2 56
 6.2.3 Diskussion der Ergebnisse von Hypothese 3 58
 6.2.4 Diskussion der Ergebnisse von Hypothese 4 59
 6.2.5 Diskussion der Ergebnisse aus den multivariaten Analysen61

7 Zusammenfassung .. 65
Inhaltsverzeichnis

8 Literaturverzeichnis ... 67
9 Abbildungsverzeichnis .. 79
10 Tabellenverzeichnis ... 80
11 Anhang .. 82
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
<th>Englischer Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
<td></td>
</tr>
<tr>
<td>AAOP</td>
<td>American Academy of Orofacial Pain</td>
<td></td>
</tr>
<tr>
<td>ASSPro</td>
<td>Assoziiertes Projekt der Study of Health in Pomerania</td>
<td></td>
</tr>
<tr>
<td>CMD</td>
<td>Kraniomandibuläre Dysfunktion</td>
<td></td>
</tr>
<tr>
<td>DGFDT</td>
<td>Deutsche Gesellschaft für Funktionsdiagnostik und Therapie</td>
<td></td>
</tr>
<tr>
<td>DGSS</td>
<td>Deutsche Gesellschaft zum Studium des Schmerzes</td>
<td></td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
<td></td>
</tr>
<tr>
<td>engl.</td>
<td>englisch</td>
<td></td>
</tr>
<tr>
<td>IKP</td>
<td>Maximale Interkuspidation</td>
<td></td>
</tr>
<tr>
<td>M.</td>
<td>Musculus</td>
<td></td>
</tr>
<tr>
<td>min.</td>
<td>mindestens</td>
<td></td>
</tr>
<tr>
<td>Mm.</td>
<td>Musculi</td>
<td></td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomografie</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Probandenanzahl</td>
<td></td>
</tr>
<tr>
<td>n.d.</td>
<td>nicht definiert</td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Oberkiefer</td>
<td></td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>Statistische Signifikanz</td>
<td></td>
</tr>
<tr>
<td>PB</td>
<td>Prämolarenbreite</td>
<td></td>
</tr>
<tr>
<td>RDC/TMD</td>
<td>Research Diagnostic Criteria for temporomandibular Disorders</td>
<td></td>
</tr>
<tr>
<td>SHIP</td>
<td>Study of Health in Pomerania</td>
<td></td>
</tr>
<tr>
<td>SKD</td>
<td>Schneidekantendistanz</td>
<td></td>
</tr>
<tr>
<td>SZK</td>
<td>Seitenzahnhkontakt</td>
<td></td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
<td></td>
</tr>
<tr>
<td>ZNS</td>
<td>Zentrales Nervensystem</td>
<td></td>
</tr>
</tbody>
</table>
1 Einleitung

Kaum ein Thema der Zahnmedizin ist so umstritten wie die Ätiopathogenese kraniozahntaler Dysfunktionen, kurz CMD. Obwohl längst als chronisches Schmerzsyndrom bekannt, prägen kontroverse Ansichten und Mangel an gesicherten wissenschaftlichen Kenntnissen die Ätiologie dieser Erkrankung. Einigkeit herrscht jedoch hinsichtlich eines multikausalen Geschehens. So scheinen traumatische, anatomische, neuromuskuläre und psychosoziale Faktoren sowohl an Prädposition, Auslösung und Unterhaltung beteiligt zu sein [John 2000].

Beide Publikationen zeigen, dass in diesem Zusammenhang zu wenige repräsentative Studien existieren. Es wird mehr aussagekräftige Forschung benötigt, um zukünftig einen optimalen Umgang in der Therapie und Prävention von CMD zu ermöglichen. Aufgrund der vielfachen Erscheinungsformen und Komorbiditäten dieser Erkrankung herrschen in
Einleitung

Theorie und Praxis unterschiedliche Termini, Ansichten von Ätiologie und folglich in der Behandlung:

„Temporomandibular disorders are among the most challenging diseases of modern society, diagnostically, prognostically and in terms of treatment“ [Jerolimov 2009].

2 Literaturübersicht

2.1.1 CMD

Das stomatognathische System ist komplex gestaltet und setzt sich aus verschiedenen Komponenten zusammen, die miteinander in Verbindung stehen und sich gegenseitig beeinflussen:

Maxilla und Mandibula mit Zahnbestand und Parodontium
- Kiefergelenk
- Weichgewebe und Muskulatur des Kopfes, Nackens und Halses
- Neuronale, vaskuläre und lymphatische Versorgungen
- Zungenbein und Speicheldrüsen

Der Begriff „kraniomandibuläre Dysfunktionen“ beinhaltet hauptsächlich muskuläre und artikuläre Störungen des Kausystems, wobei hier nicht zwischen schmerzhaften und schmerzlosen Zuständen differenziert wird.

2.1.2 Epidemiologie

Viele epidemiologische Studien haben sich in der Vergangenheit mit Inzidenz und Prävalenz dieser funktionsbedingten Erkrankungen auseinandergesetzt.

2.1.3 Symptomatik und Klassifikation

Nach der American Academy of Orofacial Pain, kurz AAOP, werden Funktionsstörungen des Kausystems durch 3 Kardinalsymptome gekennzeichnet [DeLeeuw 2008]:

- Muskelschmerz der orofazialen Region
- Reibe- und Knackgeräusche des Kiefergelenks
- Einschränkungen der Unterkiefermobilität bei einer Schneidekantendistanz (SKD) <4cm

Die Klassifikation in unterschiedliche Subtypen erfolgt hier anhand der Lokalisation der Dysfunktion:

<table>
<thead>
<tr>
<th>Intrakapsuläre Störungen: Arthropathien</th>
<th>Extrakapsuläre Störungen: Myopathien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formabweichungen</td>
<td>Myofaszialer Schmerz</td>
</tr>
<tr>
<td>Diskusverlagerung</td>
<td>Reflektorische Muskelschienung</td>
</tr>
<tr>
<td>Kondylusluxation</td>
<td>Myositis</td>
</tr>
<tr>
<td>Arthritisen</td>
<td>Muskelspasmus</td>
</tr>
<tr>
<td>Arthrose</td>
<td>Muskellkontraktur</td>
</tr>
<tr>
<td>Ankylosen</td>
<td></td>
</tr>
</tbody>
</table>

Tab.1-2 Achse 1 mit physischen Faktoren zur Klassifikation nach RDC/TMD

| 1: Myofaszialer Schmerz | a myofaszialer Schmerz
b myofaszialer Schmerz mit
eingeschränkter Mundöffnung (<4cm) |
|--------------------------|---|
| 2: Diskusverlagerung | a Diskusverlagerung mit Reposition
b Diskusverlagerung ohne Reposition
und eingeschränkte Mundöffnung
(<4cm)
c Diskusverlagerung ohne Reposition
und ohne eingeschränkte Mundöffnung |
| 3: Kiefergelenkerkrankungen | a Arthralgie
b Arthritis des Kiefergelenks
c Arthrose des Kiefergelenks |

2.1.4 Ätiologie

Nach heutigem Verständnis liegen kraniomandibuläre Dysfunktionen einer multifaktoriellen Genese zugrunde. Ein biopsychosoziales Modell vereint dabei 3 verschiedene Gruppen, die sich gegenseitig beeinflussen und verstärken können [Ververs et al. 2004].

![Diagramm der Ätiologie einer CMD nach Ververs et al.](image-url)

2.2 Okklusion

2.2.1 Kondylenposition und Interkuspidation in der Statik

Nach ihm wird die ideale statische Okklusion durch 6 Schlüssel festgelegt:

1. Molarenrelation
2. Kronenangulation
3. Kroneninklination
4. Ausbleiben von Rotationen
5. Antagonistenkontakt
6. Speesche Kurve

Unbeachtet der Lage der Kondylen, beinhaltet die maximale Interkuspidation lediglich die zahngeführte Position, also die statische Okklusion mit maximalem Vielpunktkontakt.

- Unterkiefer kann leicht in zentrische Position gebracht werden
- maximale Interkuspidation liegt etwa 0,5mm vor der Zentrik
- Kiefergelenke sind schmerzfrei und in ihrer Bewegung uneingeschränkt
- keine Anzeichen von okklusalem Trauma
- Palpation der Kaumuskulatur ist ohne Befund

2.2.2 Okklusionsschemata in der Dynamik

Des Weiteren bedeutet eine eckzahngeführte Okklusion, dass bei exkursiven Lateralschiebewegungen des Unterkiefers nur die Canini der Arbeitsseite in Kontakt stehen. Hierbei können zusätzlich auch die Frontzähne mit beteiligt sein, zusammengefasst als Front-Eckzahnführung.

Bei der Gruppenführung, auch unilateral balancierte Führung genannt, okkludieren zusätzlich noch die Molaren und/oder Prämolaren der Arbeitsseite.

2.2.3 Schlussfolgerung für statische und dynamische Okklusion

Literaturübersicht

2.2.4 Okklusale Störfaktoren

- statische Vorkontakte
- Mediotrusionskontakte
- unilaterale Kontakte in der Zentrik
- laterales Abgleiten zwischen IKP und Zentrik
- mehr als nur Canini- oder Gruppenführung bei Laterotrusion
- prädominierende posteriore Kontakte während Protrusion

Literaturübersicht

2.3 Korrelation von CMD und Okklusion

und extremen Okklusionsstörungen, wie anterior offener Biss, Überbiss von mehr als 6mm, mehr als 2mm Diskrepanz zwischen IKP und Zentrik, mindestens 5 fehlende Molaren oder ein einseitig posteriorder Kreuzbiss auf. Pullinger et al. [1993] untersuchten hierbei das Aufkommen okklusaler Interferenzen in 5 CMD-Gruppen gegenüber asymptomatischen Probanden und berechneten mittels logistischer Regression okklusale Risikofaktoren für das Entwickeln einer CMD. Sie schlussfolgerten, dass diese allerdings keine entscheidende Rolle im Entstehungsprozess einer kraniomandibulären Dysfunktion einnehmen.

2.3.1 Therapeutische Ansätze bei CMD

3 Aufgabenstellung

Zu Beginn soll ein Überblick über soziodemografische Aspekte des definierten Probandenguts eines assoziierten Projektbereiches (ASSPro) der Study of Health in Pomerania (SHIP0) gegeben werden, gefolgt von prävalenten Aussagen über funktionelle Symptome und okklusale Parameter.
Hieran schließt sich das Auffinden möglicher statistisch signifikanter Zusammenhänge okklusaler Störfaktoren und Anzeichen kranio-mandibulärer Dysfunktionen an. Folgende Hypothesen werden hierbei betrachtet:

Hypothese 1
Probanden mit einem Verlust von antagonistischem Kontakt beziehungsweise ganzer Stützzonen zeigen eine signifikant erhöhte Abhängigkeit zu Anzeichen kranio-mandibulärer Dysfunktionen.

Hypothese 2
Probanden, bei denen laterotrusive oder protrusive Bewegungsabläufe Hyperbalancekontakte aufweisen oder von einer Front-Eckzahnführung abweichen, zeigen signifikante Assoziationen zu dysfunktionellen Symptomen.

Hypothese 3
Studienteilnehmer mit dysgnathischen Gebissverhältnissen weisen eine signifikant deutlichere Abhängigkeit zu Symptomen einer CMD auf, als solche mit eugnather Situation.

Hypothese 4
Probanden mit Abfraktionen oder Schlifffacetten zeigen signifikant erhöhte Assoziationen zu parafunktionellen Aktivitäten und dysfunktionellen Anzeichen.
4 Material und Methode

4.1 Probandenkollektiv

basierend auf 558 Personen unterschiedlichen Alters, Geschlechts und Familienstandes für die Betrachtung möglicher Zusammenhänge der erhobenen Parameter in Okklusion und Funktion.

5 Jahre nach SHIP0 beziehungsweise 4 Jahre nach Start des assoziierten Projektbereiches wurde eine erneute klinische Untersuchung, bezeichnet als SHIP1, durchgeführt. Dieser willigten im ASSPro noch 479 der Studienteilnehmer ein. Hierdurch bestand die Möglichkeit der longitudinalen Betrachtung, wodurch etwaige kausale Aussagen getroffen werden können. Einen Überblick zur Auswahl des Probandenguts liefert die nachstehende Abbildung.

Abb. 1-2 Schematische Darstellung des Probandenguts

*Anzahl der Probanden, mit denen gerechnet wurde
4.2 Untersuchungsverfahren

4.2.1 Zahnärztlicher und kieferorthopädischer Befund

Nach John stellt für „epidemiologische Studien [...] die klinische Untersuchung des orofazialen Systems die Basis dar“ [John 2000].

\[\begin{array}{ccc}
A &=& \text{antagonistischer Kontakt in 4 Stützzonen} \\
B &=& \text{antagonistischer Kontakt in < 4 Stützzonen} \\
C &=& \text{kein antagonistischer Kontakt} \\
A1 &=& \text{beide Kiefer vollbezahnt} \\
B1 &=& \text{antagonistischer Kontakt in 3 Stützzonen} \\
C1 &=& \text{Restzähne in beiden Kiefern} \\
A2 &=& \text{nur ein Kiefer vollbezahnt} \\
B2 &=& \text{antagonistischer Kontakt in 2 Stützzonen} \\
C2 &=& \text{Restzähne in einem Kiefer} \\
A3 &=& \text{beide Kiefer mit Lücken} \\
B3 &=& \text{antagonistischer Kontakt nicht in Stützzone} \\
C3 &=& \text{keine Zähne} \\
\end{array} \]

Abb. 1-3 Klassifikation nach Eichner

Parameter in statischer und dynamischer Okklusion wurden mithilfe von Okklusions- und Shimstockfolie erfasst. Registriert wurden hierbei Kontakte in Interkuspidation und während protrusiver und laterotrusiver Bewegungsabläufe. Die Protrusionsbewegung wurde bis auf

Tab.1-3 Tooth Wear Index nach Hugoson

<table>
<thead>
<tr>
<th>Grad</th>
<th>Kriterium</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Keine oder geringfügige Schliffacetten</td>
</tr>
<tr>
<td>1</td>
<td>Facetten im Schmelz auch mit geringer Dentinbeteiligung</td>
</tr>
<tr>
<td>2</td>
<td>Facetten im Dentin bis zu einem Drittel der Kronenhöhe</td>
</tr>
<tr>
<td>3</td>
<td>Verlust von mehr als einem Drittel der Kronenhöhe</td>
</tr>
</tbody>
</table>

Hinsichtlich kieferorthopädischer Aspekte unterschied man zunächst zwischen eugnathen und dysgnathen Formen. In der sagittalen Ebene waren Okklusionsmuster entsprechend der Klassifikation nach Angle und Diskrepanzen zum physiologischem Overjet wie beispielsweise eine umgekehrte Frontzahnstufe oder eine invertiert stehende Oberkieferfront von Bedeutung. Registriert wurden weiterhin vertikale Okklusionsanomalien wie frontal offener Biss oder Tiefbiss und Dysgnathien in der transversalen Ebene, wie Kreuzbiss und Kopfbiss sowohl ein- als auch beidseits. Auch
Engstände beziehungsweise lückige Gebissverhältnisse wurden notiert und entsprechender Platzmangel oder Platzüberschuss berechnet.

Ein zahnmedizinisches Interview im Vorfeld diente dem Erfassen des Mundgesundheitswissens- und verhaltens der Probanden. Die Selbsteinschätzung der eigenen Mundgesundheit und die Inanspruchnahme zahnärztlicher Leistungen wurden hierbei registriert.
4.2.2 Klinische Funktionsanalyse

Die im ASSPro und in SHIP1 durchgeführte klinische Funktionsanalyse diente der Untersuchung etwaiger Störungen im Bewegungsablauf des orofazialen Systems.

All diese Untersuchungen wurden am entspannt und aufrecht sitzenden Probanden durchgeführt.
4.3 Datenanalyse

Die statistischen Analysen erfolgten mittels SPSS 17.0. Zunächst wurden deskriptive Aussagen des Probandenguts anhand Häufigkeitsverteilungen verschiedener Parameter ermittelt.

Anschließende bivariate Berechnungen wurden zum einen in Form des Chi-Quadrat-Tests unter Zuhilfenahme des Signifikanztests nach Fisher (zweizeitig) durchgeführt. Dieser Hypothesentest prüft in der Nullhypothese (H0), ob zwei nominal skalierte Variablen unabhängig voneinander sind, wobei der ausgewiesene Wert mit einem Erwartungswert verglichen wird. Zum anderen wurde für Variablen, die einem metrischen Messniveau folgen, also in Intervallen skaliert sind, die Korrelationsanalyse nach Spearman genutzt. Dabei nimmt der Korrelationskoeffizient Werte zwischen -1 und +1 an, zeigt also einen negativen oder positiven Zusammenhang auf. Je dichter der Koeffizient an 0 liegt, desto schwächer ist die Korrelation.

Im Anschluss hieran wurden Regressionsmodelle für das Erfassen möglicher Risikofaktoren erstellt, zunächst im Querschnitt, dann longitudinal mit Daten aus SHIP 1. Dies erfolgte unter Ausschluss prävalenter Fälle. Bei diesen multivariaten Analysen wurde ein Konfidenzniveau von 95% festgelegt, das Odds ratio in diesem Zusammenhang beinhaltet das mögliche Risiko für den untersuchten Parameter. Weiterhin gibt das Maß nach Nagelkerkes R² die Anpassung des Modells an den Datensatz wieder, wobei ein kleiner Wert, eine schlechtere Anpassung bedeutet.

Ausgewiesen wurden stets Signifikanzen mit p<0,05, wobei Werte kleiner 0,01 als hoch und Werte kleiner 0,001 als höchst signifikant definiert wurden. Auch statistische Assoziationen mit p<0,1 wurden als Tendenzen mit aufgezeigt.
5 Ergebnisse

5.1 Beschreibung der Stichprobe

5.1.1 Verteilung gemäß soziodemografischer Komponenten

Basis der Studie bildet ein Probandenkollektiv von insgesamt 558 Personen, davon 250 männlichen und 308 weiblichen Geschlechts. Die prozentuale Altersverteilung ist in Abbildung 2-1 ersichtlich, wobei ausschließlich Probanden im Alter zwischen 20 und 49 Jahren einbezogen wurden.

\[\text{Abb. 2-1 Prozentuale Altersverteilung entsprechend WHO-Altersgruppen}\]

Die nachstehende Tabelle gibt Auskunft über den Bildungsstand des Probandenguts gemessen am Schulabschluss, wobei 66% diesen an der Oberschule absolviert hatten, gefolgt von 27% mit Abitur.

\[\text{Tab. 2-1 Häufigkeitsverteilung des jeweils absolvierten Schulabschlusses}\]

\begin{tabular}{|c|c|c|}
\hline
Schulabschluss & N=558 & Prozent \\
\hline
Hauptschule & 34 & 6,1% \\
Oberschule & 371 & 66,5% \\
Abitur & 152 & 27,2% \\
Keine Angabe & 1 & 0,2% \\
\hline
\end{tabular}
Die Betrachtung des familiären Umfeldes zeigte, dass über die Hälfte der Studienteilnehmer mit ihrem Partner verheiratet lebten, knapp 40% waren ledig. Dargestellt ist dies in Abbildung 2-2.

Abb. 2-2 Prozentuale Verteilung nach Familienstand
5.1.2 Häufigkeitsverteilungen einzelner Okklusionsparameter

Beginnend wurde die jeweilige Klassifikation nach Angle in Schlussbissstellung erfasst. Abweichungen von der Regelverzahnung wurden in Prämolarenbreiten (PB) angegeben. So schienen neutrale, distale und eine Okklusion in gemischtter Form in etwa gleichverteilt zu sein, wohingegen eine Mesialokklusion nur bei 5,4% der Probanden auftrat.

Tab.2-2 Häufigkeitsverteilung entsprechend der Klassifikation nach Angle

<table>
<thead>
<tr>
<th>Angle-Klassifikation</th>
<th>N=558</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>neutral</td>
<td>198</td>
<td>35,5%</td>
</tr>
<tr>
<td>½ PB distal</td>
<td>120</td>
<td>21,5%</td>
</tr>
<tr>
<td>1 PB distal</td>
<td>53</td>
<td>9,5%</td>
</tr>
<tr>
<td>mesial</td>
<td>30</td>
<td>5,4%</td>
</tr>
<tr>
<td>gemischt</td>
<td>157</td>
<td>28,1%</td>
</tr>
</tbody>
</table>

Die Klassifikation nach Eichner verweist auf einen etwaigen Verlust von Stützzonen in der Okklusion. So konnten knapp 89% der Probanden Kategorie A zugeordnet werden, in etwa 8% wiesen Kontakt in 3 Stützzonen entsprechend B1 auf und 3% in 2 Stützzonen definiert als B2.

Tab.2-3 Häufigkeitsverteilung entsprechend der Klassifikation nach Eichner

<table>
<thead>
<tr>
<th>Eichner-Klassifikation</th>
<th>N=558</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>495</td>
<td>88,7%</td>
</tr>
<tr>
<td>B1</td>
<td>46</td>
<td>8,2%</td>
</tr>
<tr>
<td>B2</td>
<td>17</td>
<td>3,1%</td>
</tr>
</tbody>
</table>

Die Führungsmuster während Laterotrusionsbewegungen wurden für die rechte und linke Seite getrennt voneinander betrachtet. Beidseits dominierte die Front-Eckzahnführung. Während auf der rechten Seite Gruppen- oder balancierte Führung in etwa gleich häufig vorkamen, zeigte sich links ein verringertes Auftreten Ersterer.
5.1.2.1 Prävalenz nichtkariogener Zahnhaltsdefekte

Abb.2-3 Prozentuale Verteilung keilförmiger Defekte
5.1.2.2 Okklusale Schlifffacetten, Abrasionen und Attritionen

Der Index nach Hugoson graduiert die Ausprägung von Schlifffacetten. So stellt die nachstehende Abbildung die geschlechtsspezifische Verteilung des mittelwertigen Indexes in den jeweiligen Altersgruppen dar. Auffällig hierbei sind die Zunahme dessen während des Alters und die erhöhten Werte beim männlichen Geschlecht verglichen zum Weiblichen.

Abb. 2-4 Geschlechtsspezifische Verteilung des Hugoson-Index in Abhängigkeit zum Alter
5.1.3 Geschlechtsspezifische Prävalenzen funktioneller Aspekte

Etwa 25% aller Studienteilnehmer gaben an, mit den Zähnen zu pressen, wobei mehr Frauen als Männer bruxierten.

Tab. 2-7 Geschlechtsspezifische Prävalenz Zähnepressen (p=0,238)

<table>
<thead>
<tr>
<th>Zähnepressen</th>
<th>Gesamt</th>
<th>Männlich</th>
<th>Weiblich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=558</td>
<td>N=250</td>
<td>N=308</td>
</tr>
<tr>
<td>ja</td>
<td>139</td>
<td>56</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>24,9%</td>
<td>22,4%</td>
<td>26,9%</td>
</tr>
<tr>
<td>nein</td>
<td>419</td>
<td>194</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>75,1%</td>
<td>77,6%</td>
<td>73,1%</td>
</tr>
</tbody>
</table>

Die Palpation der Kaumuskulatur resultierte bei knapp 22% der Probanden in einer Druckdolenz. Die Prävalenz lag beim weiblichen Geschlecht mit 27,3% deutlich höher als bei den männlichen Probanden mit 15,2%. Die Unterschiede waren statistisch signifikant mit p=0,001.

Tab. 2-8 Geschlechtsspezifische Prävalenz Druckdolenz Muskulatur (p=0,001)

<table>
<thead>
<tr>
<th>Druckdolenz</th>
<th>Gesamt</th>
<th>Männlich</th>
<th>Weiblich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muskulatur</td>
<td>N=558</td>
<td>N=250</td>
<td>N=308</td>
</tr>
<tr>
<td>ja</td>
<td>122</td>
<td>38</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>21,9%</td>
<td>15,2%</td>
<td>27,3%</td>
</tr>
<tr>
<td>nein</td>
<td>436</td>
<td>212</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>78,1%</td>
<td>84,8%</td>
<td>72,7%</td>
</tr>
</tbody>
</table>

Ein druckdolentes Kiefergelenk trat bei Frauen doppelt so häufig auf wie bei männlichen Studienteilnehmern. Die Signifikanz lag hier bei p=0,004.

Tab. 2-9 Geschlechtsspezifische Prävalenz Druckdolenz Kiefergelenk (p=0,004)

<table>
<thead>
<tr>
<th>Druckdolenz</th>
<th>Gesamt</th>
<th>Männlich</th>
<th>Weiblich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiefergelenk</td>
<td>N=558</td>
<td>N=250</td>
<td>N=308</td>
</tr>
<tr>
<td>ja</td>
<td>81</td>
<td>24</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>14,%</td>
<td>9,6%</td>
<td>18,5%</td>
</tr>
<tr>
<td>nein</td>
<td>477</td>
<td>226</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>85,5%</td>
<td>90,4%</td>
<td>81,5%</td>
</tr>
</tbody>
</table>

Das Symptom des reziproken Kiefergelenkknackens während orofazialer Bewegungsabläufe wurde für die rechte und linke Seite getrennt voneinander betrachtet. Dabei konnten Geräusche des rechten Gelenks, im
Vergleich zur linken Seite, geringfügig öfter registriert werden. Frauen waren tendenziell häufiger betroffen als Probanden männlichen Geschlechts.

<table>
<thead>
<tr>
<th>Reziprokes Knacken</th>
<th>Gesamt</th>
<th>Männlich</th>
<th>Weiblich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechts ja</td>
<td>82</td>
<td>29</td>
<td>53</td>
</tr>
<tr>
<td>Rechts nein</td>
<td>476</td>
<td>221</td>
<td>254</td>
</tr>
<tr>
<td>Links ja</td>
<td>88</td>
<td>34</td>
<td>54</td>
</tr>
<tr>
<td>Links nein</td>
<td>470</td>
<td>216</td>
<td>254</td>
</tr>
</tbody>
</table>

Auskunft über schmerzhafte Mobilitäts einschränkungen des Unterkiefers hinsichtlich der erreichten Schneidekantendistanz gibt die nachstehende Tabelle. Insgesamt war hierbei die passive, also vom Behandler induzierte, SKD dolenter als die Aktive, die der Patient selbstständig erzielte. Während Dolenzen bei aktiver Form zwischen beiden Geschlechtern gleichmäßig auftrat, berichteten bei provoziert der SKD mehr Frauen von Schmerzaftigkeit.

<table>
<thead>
<tr>
<th>Mobilitäts- einschränkung</th>
<th>Gesamt</th>
<th>Männlich</th>
<th>Weiblich</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKD aktiv dolent</td>
<td>14</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>SKD aktiv indolent</td>
<td>544</td>
<td>243</td>
<td>301</td>
</tr>
<tr>
<td>SKD passiv dolent</td>
<td>37</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>SKD passiv indolent</td>
<td>521</td>
<td>237</td>
<td>284</td>
</tr>
</tbody>
</table>

Zusammenfassend waren die Probanden weiblichen Geschlechts bei fast allen funktionellen Parametern, wie Druckdolenz von Muskulatur und Kiefergelenk, reziprokes Gelenkknacken, Zähnpresen und schmerzhaften Limitationen bei Unterkieferbewegungen, häufiger betroffen als männliche Personen, ausgenommen hiervon ist lediglich die Mobilitäts einschränkung

*statistisch signifikant mit $p \leq 0,004$
5.2 Zusammenhänge dentaler und funktionaler Parameter

Zugunsten der Übersicht werden Okklusion, dynamische Führungstypen, Dysgnathien und Abfraktionen mit Schliiffacetten getrennt voneinander dargelegt.

5.2.1 Betrachtung Okklusion und Zahnkontakt mit Funktion

5.2.1.1 Aspekt der Eichner-Klassifikation

Die Betrachtung antagonistischer Kontakte zeigte signifikante Zusammenhänge mit \(p<0,01 \) zwischen dem Verlust einer oder zweier Stützzonen und dem Auftreten von reziprokem Kiefergelenkknacken.

Tab.2-12 Kreuztabelle Eichner-Klassifikation und reziprokes Kiefergelenkknacken (rechts \(p=0,004; \) links \(p=0,001 \))

<table>
<thead>
<tr>
<th>Reziprokes Knacken</th>
<th>Eichner-Klassifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eichner A</td>
</tr>
<tr>
<td></td>
<td>N=495</td>
</tr>
<tr>
<td>Rechts ja</td>
<td>66</td>
</tr>
<tr>
<td>Rechts nein</td>
<td>429</td>
</tr>
<tr>
<td>Links ja</td>
<td>72</td>
</tr>
<tr>
<td>Links nein</td>
<td>423</td>
</tr>
</tbody>
</table>

Es zeigte sich ein Zusammenhang mit einer Signifikanz von \(p=0,023 \) zwischen dem Kontakt in allen 4 Stützzonen und Probanden, die angaben mit den Zähnen zu pressen.

Tab.2-13 Kreuztabelle Eichner-Klassifikation und Zähnpresen (\(p=0,023 \))

<table>
<thead>
<tr>
<th>Zähnpresen</th>
<th>Eichner-Klassifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eichner A</td>
</tr>
<tr>
<td></td>
<td>N=495</td>
</tr>
<tr>
<td>ja</td>
<td>132</td>
</tr>
<tr>
<td>nein</td>
<td>363</td>
</tr>
</tbody>
</table>
5.2.1.2 Diagnose kein Kontakt im Seitenzahnbereich

Tab.2-14 Kreuztabelle Seitzahnkontakt und Druckdolenz Kiefergelenk (p=0,055)

<table>
<thead>
<tr>
<th>Druckdolenz Kiefergelenk</th>
<th>Seitenzahnkontakt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ja N=538</td>
</tr>
<tr>
<td>ja</td>
<td>75 13,9%</td>
</tr>
<tr>
<td>nein</td>
<td>463 86,1%</td>
</tr>
</tbody>
</table>

Tab.2-15 Kreuztabelle Seitzahnkontakt und reziprokes Kiefergelenkknacken rechts (p=0,098)

<table>
<thead>
<tr>
<th>Reziprokes Knacken rechts</th>
<th>Seitenzahnkontakt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ja N=538</td>
</tr>
<tr>
<td>ja</td>
<td>76 14,1%</td>
</tr>
<tr>
<td>nein</td>
<td>462 85,9%</td>
</tr>
</tbody>
</table>
5.2.2 Führungsmuster mit Faktoren der Funktion

5.2.2.1 Laterotrusionsbewegungen

Während Laterotrusionsbewegungen wiesen die jeweiligen Führungsmöglichkeiten Tendenzen mit p<0,1 zu funktionellen Komponenten auf.

Bei einer Front-Eckzahnführung der rechten Seite trat ein reziprokes Knacken des rechten Kiefergelenks seltener auf als erwartet. Die Probandenanzahl betrug hierbei 554, p lag bei einem Wert von 0,088.

Tab.2-16 Kreuztabelle Front-Eckzahnführung rechts und Kiefergelenkknacken rechts (p=0,088)

<table>
<thead>
<tr>
<th>Reziprokes Knacken rechts</th>
<th>Front-Eckzahnführung rechts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>N=226</td>
</tr>
<tr>
<td>ja</td>
<td>26</td>
</tr>
<tr>
<td>11,5%</td>
<td>17,1%</td>
</tr>
<tr>
<td>nein</td>
<td>200</td>
</tr>
<tr>
<td>88,5%</td>
<td>82,9%</td>
</tr>
</tbody>
</table>

Tab.2-17 Kreuztabelle Gruppenführung links und Zähnepressen (p=0,06)

<table>
<thead>
<tr>
<th>Zähnepressen</th>
<th>Gruppenführung links</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>N=148</td>
</tr>
<tr>
<td>ja</td>
<td>46</td>
</tr>
<tr>
<td>31,3%</td>
<td>23%</td>
</tr>
<tr>
<td>nein</td>
<td>102</td>
</tr>
<tr>
<td>68,9%</td>
<td>77%</td>
</tr>
</tbody>
</table>
5.2.2.2 Hyperbalancen während Protrusion

Zusammenhänge betreffend Hyperbalancen konnten nur während protrusiver Bewegungsabläufe ermittelt werden. Die Probandenanzahl war hierbei um 7 Studienteilnehmer reduziert. So traten bei knapp 23% der Studienteilnehmer Frühkontakte der Molaren während einer Protrusion auf. Diese Hyperbalancen zeigten eine Tendenz mit reduziertem Auftreten von reziprokem Knacken des rechten Kiefergelenks auf (p=0,064).

Tab.2-18 Kreuztabelle Protrusionshyperbalancen und reziprokes Kiefergelenkknacken rechts (p=0,064)

<table>
<thead>
<tr>
<th>Reziprokes Knacken rechts</th>
<th>Hyperbalancen bei Protrusion</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td>N=126</td>
<td>N=425</td>
</tr>
<tr>
<td>ja</td>
<td>12</td>
<td>69</td>
</tr>
<tr>
<td>nein</td>
<td>114</td>
<td>356</td>
</tr>
</tbody>
</table>
5.2.3 Kieferorthopädischer Befund mit funktionellen Aspekten

Folgend werden die kieferorthopädischen Leitsymptome entsprechend ihrer zugehörigen Ebene aufgeführt.

5.2.3.1 In der sagittalen Ebene

Bei Betrachtung der jeweiligen Verzahnungen entsprechend ihrer Zuordnung nach Angle zeigte einzig die Distalokklusion um eine ½ PB einen statistisch signifikanten Zusammenhang mit p=0,016 bezüglich dolenter Limitationen bei aktiver Mundöffnung.

<table>
<thead>
<tr>
<th>Mobilitätseinschränkung mit Schmerzen bei SKD (aktiv)</th>
<th>Distalokklusion um ½ PB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>N=120</td>
</tr>
<tr>
<td>ja</td>
<td>7</td>
</tr>
<tr>
<td>nein</td>
<td>113</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Druckdolenz Kiefergelenk</th>
<th>Invertiert stehende Oberkieferfront</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>N=70</td>
</tr>
<tr>
<td></td>
<td>Prozent</td>
</tr>
<tr>
<td>ja</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>24,3%</td>
</tr>
<tr>
<td>nein</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>75,7%</td>
</tr>
</tbody>
</table>
5.2.3.2 In der vertikalen Ebene
In dieser Ebene schienen keine statistisch signifikanten Assoziationen mit Symptomen von Funktionsstörungen des orofazialen Systems aufzutreten.

5.2.3.3 In der transversalen Ebene
Die Diagnose des einseitigen Kopfbisses wies Zusammenhänge sowohl mit Druckdolenz des Kiefergelenks als auch mit parafunktionellem Pressen der Zähne auf. Hier lag p jedoch stets bei einem Wert von >0,05, wobei diese Zusammenhänge nur unter Vorbehalt gezogen werden konnten und daher nur eine Tendenz aufzeigten.

Tab.2-21 Kreuztabelle invertiert stehende Oberkieferfront und Zähnepressen (p=0,056)

<table>
<thead>
<tr>
<th>Zähnepressen</th>
<th>Invertiert stehende Oberkieferfront</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>N=70</td>
</tr>
<tr>
<td>ja</td>
<td>24</td>
</tr>
<tr>
<td>nein</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>34,3%</td>
</tr>
<tr>
<td></td>
<td>65,7%</td>
</tr>
</tbody>
</table>

Tab.2-22 Kreuztabelle einseitiger Kopfbiss und Druckdolenz Kiefergelenk (p=0,064)

<table>
<thead>
<tr>
<th>Druckdolenz Kiefergelenk</th>
<th>Einseitiger Kopfbiss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>N=128</td>
</tr>
<tr>
<td>ja</td>
<td>12</td>
</tr>
<tr>
<td>nein</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>9,4%</td>
</tr>
<tr>
<td></td>
<td>90,6%</td>
</tr>
</tbody>
</table>

Tab.2-23 Kreuztabelle einseitiger Kopfbiss und Zähnepressen (p=0,08)

<table>
<thead>
<tr>
<th>Zähnepressen</th>
<th>Einseitiger Kopfbiss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>N=128</td>
</tr>
<tr>
<td>ja</td>
<td>24</td>
</tr>
<tr>
<td>nein</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>18,8%</td>
</tr>
<tr>
<td></td>
<td>81,2%</td>
</tr>
</tbody>
</table>
5.2.4 Hugoson-Index und keilförmige Defekte

Zunächst werden hierbei die Ergebnisse des gesamte Probandenguts analysiert, gefolgt von einer geschlechtsspezifischen Aufteilung.

5.2.4.1 Untersuchung gesamtes Probandengut

<table>
<thead>
<tr>
<th>Tab.2-24 Korrelation Hugoson-Index und Zähnepressen (gesamt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hugoson-Index</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>558</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tab.2-25 Korrelation Hugoson-Index und keilförmige Defekte (gesamt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hugoson-Index</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>558</td>
</tr>
</tbody>
</table>

5.2.4.2 Untersuchung des männlichen Probandenguts

Bei alleiniger Auswertung der männlichen Probanden korrelierten Hugoson und bruxistische Aktivitäten auf einem deutlich höheren Signifikanzniveau von p<0,01. Bezüglich dem Auftreten von Abfraktionen lag das Niveau nun noch auf p<0,05, jedoch reduziert von 0,014 auf 0,033.
5.2.4.3 Untersuchung des weiblichen Probandenguts

Bei weiblichen Probandinnen konnte keine obige Korrelation zwischen Zähnepressen, dem Hugoson-Index und Abfraktionen untereinander mit statistischer Signifikanz ermittelt werden.

Schwach korrelierte hingegen das Aufkommen keilförmiger Defekte mit reziprokem Knacken des rechten Kiefergelenks. Mit einem Wert von \(p=0,067 \) konnte allerdings nur eine Tendenz aufgezeigt werden.

5.3 Multivariate Analysen

Nun wurden für einzelne signifikante Zusammenhänge mittels logistischer Regression Risikomodelle erstellt, wobei als jeweilige abhängige Variablen entsprechend den Ergebnissen aus den bivariaten Analysen reziprokes Knacken und Druckdolenzen des Kiefergelenks festgelegt wurden. Folgende mögliche Risikofaktoren wurden ebenfalls in die Betrachtung mit einbezogen:

- Alter
- Geschlecht
- Familienstand
- Schulbildung
- Invertiert stehende Front im Oberkiefer
- fehlender Seitzahnkontakt
- Stützzonenverlust (Eichner Klassifikation)
- Zähnepressen

Zunächst wurden logistische Regressionen im Querschnitt anhand der Daten aus dem ASSPro durchgeführt. Im Anschluss hieran wurde die longitudinale Entwicklung unter Zuhilfenahme des Datenmaterials aus SHIP1 nach Ausschluss prävalenter Fälle betrachtet. Hierdurch besteht die Möglichkeit, auf eventuelle kausale Zusammenhänge schließen zu können.
5.3.1 Reziprokes Kiefergelenkknacken im Querschnitt

Wie in Tabelle 2-29 ersichtlich, wiesen Frauen gegenüber Probanden männlichen Geschlechts ein 1,7-fach höheres Risiko für reziprokes Kiefergelenkknacken auf, Probanden mit einem Verlust von 2 Stützzonen ein 3,4-fach höheres Risiko. Beide Zusammenhänge waren statistisch signifikant mit p<0,05. Die Modellanpassung entsprechend Nagelkerkes R² betrug 0,075. Die schematische Darstellung hierzu liefert Abbildung 2-6.

<table>
<thead>
<tr>
<th></th>
<th>N=112</th>
<th>p</th>
<th>OR</th>
<th>95% Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unterer Wert</td>
</tr>
<tr>
<td>Weiblich</td>
<td>72</td>
<td>0,022</td>
<td>1,678</td>
<td>1,078</td>
</tr>
<tr>
<td>Eichner A</td>
<td>91</td>
<td>0,056</td>
<td>1</td>
<td>n.d.</td>
</tr>
<tr>
<td>Eichner B1</td>
<td>13</td>
<td>0,476</td>
<td>1,297</td>
<td>0,634</td>
</tr>
<tr>
<td>Eichner B2</td>
<td>8</td>
<td>0,019</td>
<td>3,414</td>
<td>1,228</td>
</tr>
</tbody>
</table>

Abb.2-6 Logistische Regression (quer): Reziprokes Kiefergelenkknacken rechts, links, beidseits

*adjustiert nach Alter, Geschlecht, Familienstand
5.3.2 Druckdolenz Kiefergelenk im Querschnitt

<table>
<thead>
<tr>
<th></th>
<th>N=81</th>
<th>p</th>
<th>OR</th>
<th>95% Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unterer Wert</td>
</tr>
<tr>
<td>Weiblich</td>
<td>57</td>
<td>0,006</td>
<td>2,101</td>
<td>1,235</td>
</tr>
<tr>
<td>Invertierte OK-Front</td>
<td>17</td>
<td>0,032</td>
<td>2,017</td>
<td>1,061</td>
</tr>
<tr>
<td>Zähnepressen</td>
<td>27</td>
<td>0,128</td>
<td>1,516</td>
<td>0,887</td>
</tr>
<tr>
<td>kein SZK</td>
<td>6</td>
<td>0,015</td>
<td>3,684</td>
<td>1,287</td>
</tr>
</tbody>
</table>

*adjustiert nach Alter, Geschlecht, Familienstand
5.3.3 Reziprokes Kiefergelenkknacken longitudinal

\begin{verbatim}
Tab.2-31 Logistische Regression (longitudinal): Reziprokes Kiefergelenkknacken rechts, links, beidseits

<table>
<thead>
<tr>
<th></th>
<th>N=44</th>
<th>p</th>
<th>OR</th>
<th>95% Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unterer Wert</td>
</tr>
<tr>
<td>Weiblich</td>
<td>31</td>
<td>0,031</td>
<td>2,224</td>
<td>1,076</td>
</tr>
<tr>
<td>Eichner A</td>
<td>36</td>
<td>0,473</td>
<td>1</td>
<td>n.d.</td>
</tr>
<tr>
<td>Eichner B1</td>
<td>6</td>
<td>0,42</td>
<td>1,526</td>
<td>0,546</td>
</tr>
<tr>
<td>Eichner B2</td>
<td>2</td>
<td>0,319</td>
<td>2,463</td>
<td>0,418</td>
</tr>
</tbody>
</table>
\end{verbatim}

Abb.2-8 Logistische Regression (longitudinal): Reziprokes Kiefergelenkknacken rechts, links, beidseits

adjustiert nach Alter, Geschlecht, Familienstand
5.3.4 Druckdolenz Kiefergelenk longitudinal

Tab.2-32 Logistische Regression (longitudinal): Druckdolenz Kiefergelenk

<table>
<thead>
<tr>
<th>Weiblich</th>
<th>N=22</th>
<th>p</th>
<th>OR</th>
<th>95% Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Un</td>
</tr>
<tr>
<td>Weiblich</td>
<td>14</td>
<td>0,39</td>
<td>1,496</td>
<td>0,597</td>
</tr>
<tr>
<td>Invertierte OK-Front</td>
<td>4</td>
<td>0,236</td>
<td>2,064</td>
<td>0,623</td>
</tr>
<tr>
<td>Zähnenprespessen</td>
<td>6</td>
<td>0,615</td>
<td>1,294</td>
<td>0,474</td>
</tr>
<tr>
<td>kein SZK</td>
<td>1</td>
<td>0,451</td>
<td>2,345</td>
<td>0,255</td>
</tr>
</tbody>
</table>

Abb.2-9 Logistische Regression (longitudinal): Druckdolenz Kiefergelenk

*adjustiert nach Alter, Geschlecht, Familienstand
6 Diskussion

6.1 Methodenkritik

6.1.1 Die Stichprobe

Das vorliegende Datenmaterial entstammt dem ASSPro, einer Substichprobe der Study of Health in Pomerania, welche für diese Region bevölkerungsrepräsentativ ist. Mit einem Umfang von insgesamt 4310 Probanden gilt SHIP als „largest cross-sectional investigation in which, among other variables, occlusal parameters and TMD signs and symptoms were analysed“ [Türp & Schindler 2012].

6.1.2 Klinische Untersuchung der Probanden

6.2 Diskussion der Ergebnisse

Im Folgenden soll nun die Aussagekraft der gefunden Ergebnisse kritisch bewertet und mit den Erkenntnissen anderer Studien in Bezug zueinander gesetzt werden. Zugunsten der Übersicht werden die einzelnen Hypothesen getrennt voneinander betrachtet, anschließend die Ergebnisse der multivariaten Analysen.

6.2.1 Diskussion der Ergebnisse von Hypothese 1

Diskussion

56

6.2.2 Diskussion der Ergebnisse von Hypothese 2

Bei Betrachtung der jeweiligen Führungen während Laterotrusionsbewegungen, erscheint eine Führung über die Canini derzeit als ideal, da sie die weiteren Zähne vor exzentrischer Belastung bewahren soll [Rinchuse et al. 2007]. Hierzu konnten Hirata et al. [2010] zeigen, dass Probanden mit einem Bewegungsablauf über Front, Eckzahn und Prämolaren ein 2,3-fach erhöhtes Risiko haben, keilförmige Defekte zu entwickeln, als

Insgesamt resultierten bei Betrachtung der dynamischen Okklusion keine statistisch relevanten Zusammenhänge zu dysfunktionalen Symptomen. Die Hypothese 2 muss daher anhand der vorliegenden Untersuchung abgelehnt werden.
6.2.3 Diskussion der Ergebnisse von Hypothese 3

erforschten Luther et al. [2010] in Form eines Cochrane Reviews. Sie untersuchten ebenfalls, ob kieferorthopädische Maßnahmen zu CMD führen können. Keine der bisherigen Studien erfüllte allerdings die gestellten Auswahlkriterien. So resümieren Luther et al., dass derzeit keine evidenzbasierten Aussagen bezüglich des Einflusses kieferorthopädischer Behandlungen auf kranio-mandibuläre Dysfunktionen getroffen werden können.

Schlussfolgernd für die vorliegende Untersuchung kann Hypothese 3 nur bedingt befürwortet werden. Einzig eine invertiert stehende Oberkieferfront zeigte statistisch signifikante Zusammenhänge zu dysfunktionellen Symptomen.

6.2.4 Diskussion der Ergebnisse von Hypothese 4

6.2.5 Diskussion der Ergebnisse aus den multivariaten Analysen

„An absence of any relationship should not be inferred because this would imply an absence of any relationship between form and function“ [Pullinger & Seligman 2000].
7 Zusammenfassung

Im Rahmen der vorliegenden Studie wurde der Zusammenhang zwischen Parametern der statischen und dynamischen Okklusion mit funktionellen Störungen des Kauorgans untersucht. Grundlage dieser Dissertation bildet das Datenmaterial des ASSPro, einem assoziierten Projektbereich der Study of Health in Pomerania. Basierend auf einem Probandenkollektiv bestehend aus 558 Studienteilnehmern unterschiedlichen Alters, Geschlechts und Familienstandes, ergaben sich mithilfe statistischer Analyseverfahren folgende Relationen:

- Der Verlust einer oder zweier Stützzonen zeigte eine erhöhte Abhängigkeit zu reziprokem Knacken des Kiefergelenks.
- Bei einem Vorhandensein aller Stützzonen gaben mehr Probanden an zu pressen, als erwartet.
- Bei Probanden ohne Seitenzahnkontakt zeigten sich Zusammenhänge zu Druckdolenzen des Kiefergelenks.
- Aspekte der dynamischen Okklusion legten keine statistisch relevanten Zusammenhänge zu dysfunktionalen Symptomen dar.
- Eine invertiert stehende Oberkieferfront zeigte eine erhöhte Abhängigkeit zu Druckdolenzen des Kiefergelenks.
- Es konnten keine statistisch relevanten Zusammenhänge von Abfraktionen oder Schlifffacetten mit parafunktionellen Aktivitäten oder dysfunktionalen Anzeichen gefunden werden.
- Frauen wiesen ein erhöhtes Risiko für reziprokes Knacken und Druckdolenzen des Kiefergelenks auf.

479, der im ASSPro untersuchten Probanden, nahmen an den Folgeuntersuchungen bei SHIP1 teil. Mittels dieser Befunde bestand die Möglichkeit der longitudinalen Betrachtung und somit der Prüfung kausaler Zusammenhänge. Allerdings konnte keine der gefundenen Abhängigkeiten
Zusammenfassung

8 Literaturverzeichnis

Angle EH. Treatment of malocclusion of the teeth. 7th ed. Philadelphia (PA), SS White Manufacturing Company; 1907.

9 Abbildungsverzeichnis

Abb. 1-1 Ätiologie einer CMD nach Ververs et al.

Abb. 1-2 Schematische Darstellung des Probandenguts

Abb. 1-3 Klassifikation nach Eichner

Abb. 2-1 Prozentuale Altersverteilung entsprechend WHO-Altersgruppen

Abb. 2-2 Prozentuale Verteilung nach Familienstand

Abb. 2-3 Prozentuale Verteilung keilförmiger Defekte

Abb. 2-4 Geschlechtsspezifische Verteilung des Hugoson-Index in Abhängigkeit zum Alter

Abb. 2-5 Geschlechtsspezifische Häufigkeitsverteilung funktioneller Aspekte in Prozent

Abb. 2-6 Logistische Regression (quer): Reziprokes Kiefergelenkknacken rechts, links, beidseits

Abb. 2-7 Logistische Regression (quer): Druckdolenz Kiefergelenk

Abb. 2-8 Logistische Regression (longitudinal): Reziprokes Kiefergelenkknacken rechts, links, beidseits

Abb. 2-9 Logistische Regression (longitudinal): Druckdolenz Kiefergelenk
10 Tabellenverzeichnis

Tab.1-1 Klassifikation von CMD nach der AAOP
Tab.1-2 Achse 1 mit physischen Faktoren zur Klassifikation nach RDC/TMD
Tab.1-3 Tooth Wear Index nach Hugoson
Tab.2-1 Häufigkeitsverteilung des jeweils absolvierten Schulabschlusses
Tab.2-2 Häufigkeitsverteilung entsprechend der Klassifikation nach Angle
Tab.2-3 Häufigkeitsverteilung entsprechend der Klassifikation nach Eichner
Tab.2-4 Häufigkeitsverteilung Führungsmuster bei Laterotrusion rechts
Tab.2-5 Häufigkeitsverteilung Führungsmuster bei Laterotrusion links
Tab.2-6 Häufigkeitsverteilung kieferorthopädischer Leitsymptome
Tab.2-7 Geschlechtsspezifische Prävalenz Zähnepressen
Tab.2-8 Geschlechtsspezifische Prävalenz Druckdolenz Muskulatur
Tab.2-9 Geschlechtsspezifische Prävalenz Druckdolenz Kiefergelenk
Tab.2-10 Geschlechtsspezifische Prävalenz Kiefergelenkknacken
Tab.2-11 Geschlechtsspezifische Prävalenz Mobilitätseinschränkungen
Tab.2-12 Kreuztabelle Eichner-Klassifikation und Kiefergelenkknacken
Tab.2-13 Kreuztabelle Eichner-Klassifikation und Zähnepressen
Tab.2-14 Kreuztabelle Seitzahnhaltkontakt und Druckdolenz Kiefergelenk
Tab.2-15 Kreuztabelle Seitzahnhaltkontakt und Kiefergelenkknacken rechts
Tab.2-16 Kreuztabelle Front-Eckzahnführung rechts und
 Kiefergelenkknacken rechts
Tab.2-17 Kreuztabelle Gruppenführung links und Zähnepressen
Tab.2-18 Kreuztabelle Protrusionshyperbalancen und
 Kiefergelenkknacken rechts
Tab.2-19 Kreuztabelle Distalokklusion und Mobilitätseinschränkung
Tab.2-20 Kreuztabelle invertiert stehende Oberkieferfront und
 Druckdolenz Kiefergelenk
Tab.2-21 Kreuztabelle invertiert stehende Oberkieferfront und
 Zähnepressen
Tab.2-22 Kreuztabelle einseitiger Kopfbiss und Druckdolenz Kiefergelenk
Tab.2-23 Kreuztabelle einseitiger Kopfbiss und Zähnepressen
Tab.2-24 Korrelation Hugo-Son-Index und Zähnepressen (gesamt)
Tab.2-25 Korrelation Hugo-Son-Index und keilförmige Defekte (gesamt)
Tab.2-26 Korrelation Hugo-Son-Index und Zähnepressen (männlich)
Tab.2-27 Korrelation Hugo-Son-Index und keilförmige Defekte (männlich)
Tab.2-28 Korrelation keilförmige Defekte und Kiefergelenkknacken rechts
 (weiblich)
Tab.2-29 Logistische Regression (quer): Reziprokes
 Kiefergelenkknacken rechts, links, beidseits
Tab.2-30 Logistische Regression (quer): Druckdolenz Kiefergelenk
Tab.2-31 Logistische Regression (longitudinal): Reziprokes
 Kiefergelenkknacken rechts, links, beidseits
Tab.2-32 Logistische Regression (longitudinal): Druckdolenz
 Kiefergelenk
11 Anhang

11.1 Eidesstattlich Erklärung

Hiermit erkläre ich, dass ich die vorliegende Dissertation selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel benutzt habe.

Die Dissertation ist bisher keiner anderen Fakultät vorgelegt worden.

Ich erkläre, dass ich bisher kein Promotionsverfahren erfolglos beendet habe und dass eine Aberkennung eines bereits erworbenen Doktorgrades nicht vorliegt.

Datum

Unterschrift