Aus dem Institut für Physiologie

(Direktor: Univ.- Prof. Dr. med. Rainer Rettig)

der Universitätsmedizin der Ernst-Moritz-Arndt-Universität Greifswald

Thema: „Die Bedeutung des zytosolischen Renins und des Renin Binding Proteins für das Überleben von Herzzellen unter Glucosedepletion“

Inaugural - Dissertation

zur

Erlangung des akademischen

Grades

Doktor der Medizin (Dr. med.)

der

Universitätsmedizin

der

Ernst-Moritz-Arndt-Universität

Greifswald

2017

vorgelegt von:

Kowoll, Tim, geb. Beck

geb. am: 20.10.1988

in: Karl-Marx-Stadt
Dekan: Prof. Dr. rer. nat. Max P. Baur

1. Gutachter: Prof. Dr. med. J. Peters

2. Gutachter: Prof. Dr. rer. nat. habil. H. Morawietz

Ort, Raum: Sauerbruchstraße, Greifswald, Seminarraum J04.33

Tag der Disputation: 02.07.2018
Inhalt

Abbildungsverzeichnis .. IV
Tabellenverzeichnis ... IV
Abkürzungsverzeichnis ... V

1 Einleitung ...1
 1.1 Renin Angiotensin System .. 1
 1.1.1 Grundlegende Aspekte .. 1
 1.1.2 Das kardiale Renin Angiotensin System 3
 1.2 Das zytosolische Renin ... 5
 1.2.1 Alternative Renintranskripte in Ratte, Maus und Mensch 5
 1.2.2 Funktion .. 7
 1.3 Das Renin Binding Protein .. 9
 1.3.1 RenBP als Inhibitor des Renins ... 9
 1.3.2 RenBP als N-Acetyl-Glucosamin-Epimerase 11
 1.4 Hypothesen der Arbeit ... 12

2 Reagenzien, Chemikalien ...14
 2.1 Für die Zellzucht .. 14
 2.2 Für die Transfektion ... 14
 2.3 Für die Realtime-PCR ... 15
 2.4 Proteinaufarbeitung und Proteingehaltbestimmung 16
 2.5 Experimente mit dem Nativen RenBP ... 17
 2.6 Für den Western Blot ... 17
 2.7 NAGE Aktivitäts Assay ... 19
 2.8 Vitalitäts-Assays ... 20
 2.9 Durchflusszytometrie ... 20
 2.10 Fluoreszenzmikroskopie .. 20
3 Methoden .. 22

3.1 Zellkultur ... 22

3.1.1 Allgemeines .. 22

3.1.2 Einfrieren und Auftauen der Zellen ... 22

3.1.3 Erhaltungskultur .. 22

3.1.4 Zellzählung und Vitalitätsbestimmung durch Trypanblaufärbung 23

3.2 RenBP Knock down ... 23

3.2.1 Transfektion .. 23

3.2.2 Zellaufarbeitung für Expressionsbestimmungen 25

3.3 Expressionsbestimmungen ... 26

3.3.1 RNA Isolation und cDNA Synthese ... 26

3.3.2 Realtime-Polymerase-Ketten-Reaktion ... 26

3.4 SDS-Western Blot ... 28

3.4.1 Probenvorbereitung .. 28

3.4.2 Bestimmung des Proteingehaltes der Proben nach Bradford 29

3.4.3 Protokoll .. 30

3.5 Nativer Western Blot .. 33

3.5.1 Aufschluss der Zellen .. 33

3.5.2 Inkubation der Proben mit NEM und Renin ... 34

3.5.3 Inkubation der Proben mit Apyrase und Renin 34

3.5.4 Protokoll .. 34

3.6 Durchflusszytometrie mit siGlo ... 36

3.7 Vitalitäts-Assays .. 37

3.7.1 Kulturvorbereitung für Vitalitäts-Assays ... 37

3.7.2 Cell Viability Assay ... 37

3.7.3 Zytotoxizitäts-Assay .. 38
4 Resultate ...42
 4.1 Methoden-etablierung ...42
 4.1.1 Nachweis des RenBP mittels SDS-Western Blot.........................42
 4.1.2 Detektion des RenBP im Nativen Western Blot45
 4.1.3 Lipotransfektion von siRNA in H9c2 Zellen47
 4.1.3.1 Effizienz verschiedener Transfektionsreagenzien47
 4.1.3.2 siRNA Interferenz gegen das RenBP – siRNA von Sigma49
 4.1.3.3 siRNA Interferenz gegen das RenBP – siRNA von Dharmacon ..50
 4.2 RenBP-Dimerisierungsgrad bei H9c2 Zellen58
 4.2.1 Kolokalisationen von Renin und RenBP unter Glucosedepletion58
 4.2.2 Monomer-Bildung durch NEM, Heterodimer-Formation mit Renin65
 4.2.3 Glucosedepletion beeinträchtigt die RenBP Aktivität als Epimerase ..69
 4.3 Nekroserate unter RenBP Knock down bei H9c2 Zellen70

5 Diskussion ...74
 5.1 Bildung von RenBP/Renin Heterodimeren unter Glucosemangel74
 5.2 Protektion durch RenBP Knock down unter Glucosemangel?77
 5.3 Inhibition des zytosolischen Renins als Enzym durch RenBP80
 5.4 Formation des zellschützenden RenBP Heterodimers - Ausblick83
 5.5 Inhibition des RenBP durch das zytosolische Renins als Enzym - Ausblick 84

6 Zusammenfassung ...90

7 Literaturverzeichnis ...91

8 Publikationen ...101

9 Danksagung ..102
Abbildungsverzeichnis

Abbildung 1 Zeitverlauf der Transfektion. ... 25
Abbildung 2 Formel zur Berechnung des R₀ Wertes.. 27
Abbildung 3 SDS Western Blot – mit H9c2 Zelllysaten .. 44
Abbildung 4 Nativer Western Blot ... 47
Abbildung 5 Transfektion von siGlo in H9c2 Zellen .. 48
Abbildung 6 RenBP-Knock down mit RenBP-siRNA (Dharmacon) und PEI 54
Abbildung 7 Auswirkung von PEI auf die Nekroserate/Cell Viability Assay.......... 56
Abbildung 8 RenBP Expression nach siRNA Interferenz von Abnova 57
Abbildung 9 Immunhistochemie von H9c2 Zellen ... 61
Abbildung 10 Immunhistochemie von pIRES-H9c2 Zellen...................................... 62
Abbildung 11 Immunhistochemie von Exon (2-9) Renin-H9c2 Zellen – I 63
Abbildung 12 Immunhistochemie von Exon(2-9)Renin H9c2 Zellen - II 64
Abbildung 13 Nativer Western Blot mit NEM, Kupfersulfat, Renin 66
Abbildung 14 Nativer Western Blot mit NEM, DTNB, Renin 67
Abbildung 15 Nativer Western Blot mit Renin Nachweis .. 68
Abbildung 16 Nativer Western Blot mit Renin und Apyrase................................. 69
Abbildung 17 Einfluss der Glucosedepletion auf die NAGE-Aktivität 69
Abbildung 18 Einfluss des RenBP Knock downs auf die Nekroserate 71
Abbildung 19 Ausschnitt aus der Hexosamin-Biosynthese 86

Tabellenverzeichnis

Tabelle 1 Phasen der Realtime-PCR mit entsprechender Zeit und Temperatur 28
Tabelle 2 Verdünnungsreihe der Probe .. 29
Tabelle 3 Übersicht über die einzelnen Testparameter im SDS-Western Blot 42
Tabelle 4 Übersicht über die einzelnen Testparameter im Nativen Western Blot .. 45
Tabelle 5 Transfektion von 50 nM RenBP-siRNA (Sigma), 10 µl FuGENE HD 50
Tabelle 6 Transfektionen mit RenBP-siRNA (Dharmacon) und FuGENE HD 51
Tabelle 7 Transfektionen mit RenBP-siRNA (Dharmacon) und PEI 53
Tabelle 8 Transfektionseffizienz von PEI mit 100 nM siGlo 55
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Verum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>angiotensin converting enzyme</td>
</tr>
<tr>
<td>AHOX</td>
<td>N-Acetyl-Hexosamin-Oxidase</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosinmonophosphat</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>AT-Rezeptor</td>
<td>Angiotensin II-Rezeptor</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovines Serum-Albumin</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CMP</td>
<td>Cytidinmonophosphat</td>
</tr>
<tr>
<td>CTP</td>
<td>Cytidintriphosphat</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DAPI</td>
<td>4′,6-Diamidin-2-phenylindol</td>
</tr>
<tr>
<td>dATP</td>
<td>Desoxyadenosintriphosphat</td>
</tr>
<tr>
<td>ddATP</td>
<td>Didesoxyadenosintriphosphat</td>
</tr>
<tr>
<td>Dest.</td>
<td>destillata</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTNB</td>
<td>5,5′-Dithiobis-2-nitrobenzoesäure</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>ERK</td>
<td>extracelluluar-signal-regulated kinases</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamintetraessigsäure</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethyleneglycol-bis(aminoethylether)-N,N,N',N'- tetraessigsäure</td>
</tr>
<tr>
<td>FACS</td>
<td>fluorescence-activated cell sorting</td>
</tr>
<tr>
<td>Glc</td>
<td>Glucose</td>
</tr>
<tr>
<td>GlcNacase</td>
<td>N-Acetyl-Glucosaminidase</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosintriphosphat</td>
</tr>
<tr>
<td>HMW</td>
<td>high molecular weight</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>HTIB</td>
<td>3-Hydroxy-2,4,6-Triiodbenzoesäure</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>JAK/STAT</td>
<td>Janus-Kinase/signal transducer and activator of transcription factors</td>
</tr>
<tr>
<td>KO</td>
<td>Knock out</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactatdehydrogenase</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>ManNac</td>
<td>N-Acetyl-Mannosamin</td>
</tr>
<tr>
<td>MAP</td>
<td>mitogen activated protein</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>NAD</td>
<td>Nicotinamidadenindinukleotid</td>
</tr>
<tr>
<td>NADH</td>
<td>Oxidiertes Nicotinamidadenindinukleotid</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamidadenindinukleotidphosphat</td>
</tr>
<tr>
<td>NAGE</td>
<td>N-Acetyl-Glucosamin-Epimerase</td>
</tr>
<tr>
<td>NEM</td>
<td>N-Ethylmaleimid</td>
</tr>
<tr>
<td>NO</td>
<td>Stickstoffmonoxid</td>
</tr>
<tr>
<td>OGT</td>
<td>N-Acetyl-Glucosamin-Transferase</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphat buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase-chain-reaction – Polymerase-Ketten-Reaktion</td>
</tr>
<tr>
<td>PEI</td>
<td>Polyethylenimin</td>
</tr>
<tr>
<td>PUGNac</td>
<td>O-(2-Azetamido-2-desoxy-D-glucopyranosylidene)amino-N-Phenylcarbamat</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidenfluorid</td>
</tr>
<tr>
<td>PRR</td>
<td>(Pro) Renin Rezeptor</td>
</tr>
<tr>
<td>PSA</td>
<td>Polysialisierungen</td>
</tr>
<tr>
<td>RACE</td>
<td>rapid amplification of cDNA ends</td>
</tr>
<tr>
<td>RAS</td>
<td>Renin Angiotensin System</td>
</tr>
<tr>
<td>RenBP</td>
<td>Renin Binding Protein</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>realtime-polymerase-chain-reaction</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering ribonucleic acid</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium-duodecylsulfat</td>
</tr>
<tr>
<td>SNP</td>
<td>Einzelnukleotid-Polymorphismus</td>
</tr>
</tbody>
</table>

single nucleotide polymorphism
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMED</td>
<td>Tetramethylethylenediamin</td>
</tr>
<tr>
<td>TF</td>
<td>Transfektion</td>
</tr>
<tr>
<td>TGF</td>
<td>transforming growth factor</td>
</tr>
<tr>
<td>TTP</td>
<td>Thymidintriphosphat</td>
</tr>
<tr>
<td>unbeh.</td>
<td>unbehandelt</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Renin Angiotensin System

1.1.1 Grundlegende Aspekte

Blutdruckanstieg. Pathophysiologisch entstehen jedoch bei gesteigerter Aktivität nicht nur Nierenfibrose, Hypertrophie der Gefäßmuskulatur oder Hypertonie, sondern auch Hypertrophie mit Fibrose im Myokard.\(^2\), \(^3\)

Durch diese Rolle in der Entstehung und für das Fortschreiten von Erkrankungen wie Hypertonie oder Herzinsuffizienz werden dementsprechend verschiedene Pharmaka, die die Reaktionskaskade des RAS unterbinden, als Standardtherapie zur Behandlung eingesetzt. Dazu zählen vor allem ACE-Hemmer und AT1-Antagonisten.\(^4\), \(^5\) Auch direkte Hemmstoffe des Renins kommen in der Hypertonie-Therapie zum Einsatz.\(^5\)

Diese klassische Reaktionskaskade wurde in den letzten Jahrzehnten um neue Komponenten erweitert. Im Folgenden soll ein kurzer Einblick gegeben werden.

Der (Pro)Renin-Rezeptor (PRR) stellt eine weitere Interaktionsmöglichkeit für Renin, aber auch für Pro-Renin im RAS dar. Der PRR vermittelt nicht nur eine Autoaktivierung von (Pro)Renin zu Renin, sondern führt durch die Bindung von Renin an die Zelloberfläche zu einer lokalen RAS-Aktivierung.\(^6\) Weiterhin resultiert dies in einer Aktivierung von Transkriptionsfaktoren über Signalkaskaden wie die der extracellular-signal-regulated kinases (ERK) 1 und 2.\(^6\) Manche Wirkungen des PRR sind aber unabhängig des RAS. Vielmehr könnte er aufgrund der Beteiligung als vakuoläre-ATPase-6-assoziiertes Protein in der Aktivierung des dafür verantwortlichen Transkriptionsfaktors β-Catenin eine Rolle in der adulten und embryologischen Stammzell-, Tumor- und Zellpolaritätsentwicklung besitzen.\(^7\)

Der Mannose-6-phosphat-Rezeptor als zusätzliche, potentielle extrazelluläre Renin-Bindungsstelle dient überwiegend der Aufnahme und des intrazellulären Transportes von Renin.\(^8\)

Weiterhin existieren nicht nur andere Angiotensin-verwandte Peptide wie Angiotensin (1-7) oder Angiotensin IV mit eigenen Funktionen, sondern auch Enzyme wie beispielsweise Chymase\(^8\), welches Angiotensin II generieren kann. Dem Angiotensin (1-7), das unter anderem durch das überwiegend in den Endothelien der Koronargefäße sowie in den Tubuli der Niere gebildete ACE2\(^8\) aus Angiotensin II gebildet wird und über Mas-Rezeptoren seine Wirkung vermittelt, wird eine dem Angiotensin II gegensätzliche Wirkung zugeschrieben\(^9\). Dazu zählen z.B. eine Stickstoffmonoxid (NO) vermittelte Vasodilatation oder eine Hypertrophiehemmung nach Myokardinfarkt.\(^9\) Die Funktion des Angiotensin IV wird mit dem
Glucosestoffwechsel in Verbindung gebracht und ist, wie die der anderen Angiotensin-Peptide, Gegenstand der Forschung.10 ACE selbst scheint durch Interaktion mit Zellmembranproteinen zur Aktivierung von Transkriptionsfaktoren in der Lage zu sein.8

1.1.2 Das kardiale Renin Angiotensin System

Untersuchungen zeigten, dass viele Gewebe das RAS besitzen, vorangehend Herz, Nebenniere, Niere, Gehirn, aber auch Organe wie Pankreas, Leber, Fettgewebe oder Blutgefäße.10 Diese gewebespezifischen RAS haben zunehmend an Bedeutung gewonnen. Das kardiale RAS soll dafür als Beispiel kurz skizziert werden, nicht zuletzt, da sich die vorliegende Arbeit speziell mit den Wirkungen des RAS in Herzzellen auseinandersetzt.

Die kardiale Expression von Renin wurde kontrovers diskutiert. Manche Autoren wiesen Renin mRNA im Herzen nach11, 12, 13, andere nicht14, 15 oder nur nach Infarkt16. Mit der Entdeckung alternativer Renin-Transkripte (siehe Abschnitt 1.2), die für ein zytosolisch und mitochondrial lokalisiertes Renin kodieren, kann dieser Sachverhalt für den Organismus der Ratte wie folgt betrachtet werden: Kardial findet sich die Expression des Transkriptes für das alternative, zytosolische Renin, nicht jedoch die des sekretorischen.8, 17 Das sekretorische Renin wird über den Mannose-6-phosphat Rezeptor aufgenommen.18, 19 Angiotensinogen20 wird wie ACE8, welches sich überwiegend bei Fibroblasten und Endothelien findet21, auch lokal exprimiert. Chymase generiert alternativ Angiotensin II im humanen Herzen.22 Da jedoch eine ACE-Hemmer Gabe zur vollständigen Inhibition der kardialen Angiotensin II Synthese führte23, sehen diese und andere Autoren8, 21, die Rolle von Chymase eher untergeordnet.

Kardial wirkendes Angiotensin II führt nach Rezeptorbindung über AT1-Rezeptoren bei Myozyten zu der erwähnten Aktivierung von Signalkaskaden.3 Dies resultiert in einer positiven inotropen Wirkung und in einem verstärkten Wachstum der Zellen.3 Zusätzlich zur Transkriptionsaktivierung fungiert die Aktivierung der NADPH-Oxidase mit konsekutiver Erhöhung von Sauerstoffradikalen als weiterer Wirkmechanismus für das Wachstum der Kardiomyozyten.3 Eine übermäßige Aktivierung des RAS resultiert in einer kardialen Hypertrophie.8 Fibroblasten werden zur Proliferation angeregt, was zur Fibrose führt.21 Hypertrophie dient erneut als positive Verstärkung für das RAS.24 Aber auch „mechanische Dehnung“ durch erhöhten Füllungsdruck des Ventrikels gehören zu diesen Initiatoren. Sadoshima et. al25 zeigten schon 1993 \textit{in vitro}, dass
mechanischer Zug in Myozyten Angiotensin II produzieren und freisetzen ließ. Die Expression der durch mechanische Beanspruchung aktivierten Gene zur Hypertrophie konnten in dieser Arbeit durch Gabe von Angiotensin-II-Rezeptorantagonisten blockiert werden. Aus diesen beiden Beobachtungen leiteten die Autoren eine wichtige Bedeutung des lokalen, kardialen RAS für das druckbedingte Hypertrophiegesehehen ab. Kontrovers sind Ergebnisse zur Klärung, ob Myozyten nur durch das kardiale RAS ohne hohen Ventrikeldruck, also bei normalem Blutdruck und normalem zirkulatorischen RAS, hypertrophieren können. Bader ordnet dem kardialen RAS eine modulierende Rolle im druckbedingten Hypertrophiegesehehen zu. Hier sei jedoch für weiterführende Informationen auf entsprechende Reviews verwiesen.8, 21

Bei kardialen Fibroblasten stimuliert Angiotensin II über gleiche molekulare Mechanismen wie bei Kardiomyozyten nicht nur die Proliferation, sondern auch die Produktion von Proteinen der extrazellulären Matrix.3

Die Kombination aus proliferierenden Fibroblasten mit hypertrophen Kardiomyozyten führt als Remodelling zur Funktionseinschränkung des Herzens und kann unter anderem durch mechanischen Zug im Sinne von Hypertonie oder Ischämie ausgelöst werden.26

Auch nach einem Myokardinfarkt ist das kardiale RAS involviert.21 Kardiale Mastzellen scheinen viele Reningranula zu besitzen.27 Deren Freisetzung durch Aktivierung dieser Zellen im Rahmen eines Ischämie-Reperfusion-Modells führte nicht nur zur RAS-Aktivierung, sondern auch zur Noradrenalin-Freisetzung aus sympathischen Nervenenden, gefolgt von der Beeinflussung des Erregungsbildungssystems im Sinne von Arrhythmien.27 Weiterhin spielen Makrophagen, aber auch Fibroblasten, die sich durch TGF-β zu Myofibroblasten umwandeln, eine Rolle.8 Insbesondere das über das kardiale ACE lokal gebildete Angiotensin II scheint hier die Effekte des Remodellings maßgeblich zu beeinflussen.28

Dem ACE2-Angiotensin(1-7)-Mas-System wird im kardialen RAS eine schützende Funktion zugeordnet.21

Nicht alle diese Erkenntnisse über das kardiale RAS gelten in vivo als sicher belegt. Dennoch lässt sich neben der eindeutigen Existenz des lokalen, kardialen RAS annehmen, dass dieses in pathophysiologischen Prozessen des Remodellings oder des Postinfarktgeschehens eine für die Herzfunktion negative Rolle besitzt.

1.2 Das zytosolische Renin

1.2.1 Alternative Renintranskripte in Ratte, Maus und Mensch

Sinn und Sigmund37 beschäftigten sich auf der Basis dieser Erkenntnisse mit der gewebespezifischen Expression des menschlichen Renins. Dieses exprimierten sie in Mäusen und entdeckten ein kleineres PCR-Fragment, welches mit 194 bp anstelle der erwarteten 300 bp in der Lunge, Niere sowie im Gehirn zu allen Zeitpunkten der Entwicklung nachgewiesen werden konnte. Ein ähnliches fand sich in der Maus nicht. Unter Annahme, es könnte sich um das von Lee-Kirsch et. al36 beschriebene Exon1b
Renin handeln, wurde tatsächlich ein 27 bp Fragment detektiert, welches einem Teil des bereits entdeckten entspricht. Die fehlenden 44 bp waren nicht reproduzierbar. Interessanterweise postulierten Sinn und Sigmund37 eine Lokalisation des humanen Exon1b nicht im Intron 1, sondern -1294 bp bis -1320 bp vor dem transkribierten Abschnitt. Das Exon1b Renin schien offenbar eine zerebral, dominierende Variante zu sein. Ein drittes Transkript, welches die Autoren mit 78 bp Länge als Exon1c Renin bezeichneten und welches dem ersten Intron 80 bp vor Transkriptionsstart entstammt, wiesen sie schließlich als lungendominantes nach. Die Translation würde laut den Autoren bei beiden humanen Transkriptionsvarianten im Exon zwei beginnen.

Lutze et. al38 untersuchten die unklare Regulation der Expression des zytosolischen Renins in H9c2 Kardiomyoblasten der Ratte. Sie postulieren diese über einen alternativen Promotor im Intron 1 135 bp bis 183 bp vor dem Exon 1A, der einen Transkriptionsstart direkt in diesem Intron hervorruft. Hier fanden sich auch zwei Glucose abhängige regulatorische Areale im 5′ Bereich dieses Promotors. Des Weiteren zeigten sie auf, dass dieser unter anderen durch einen Serum Response Factor (SRF) reguliert wird.

1.2.2 Funktion

Aus den genannten Arbeiten lässt sich die Existenz einer neuen Reninvariante ableiten, die gewebsspezifisch exprimiert wird, im Zytosol vorliegt, enzymatisch aktiv ist und nicht sezerniert wird.

Clausemeyer et. al17 untersuchten zunächst die Verteilung der Expression dieser alternativen sowie der bekannten Transkriptvariante in der Ratte. Beide Formen finden sich in den Nebennieren, Milz, Thymus, Leber, Magen, Uterus, Ovar, Hoden, Kleinhirn, Hypothalamus, Medulla oblongata und in der Hypophyse. Nur im Dünndarm und in der Niere fand sich ausschließlich das sekretorische Exon1 Renin. Die neue Exon1A Variante kommt als einzige Transkriptvariante offenbar in der Lunge und im Herzen vor. Als reninfreie Organe wurden von den Autoren Aorta, Schilddrüse und die Mundbodenspeicheldrüsen identifiziert.17 Beobachtet wurde außerdem, dass nach einem Myokardinfarkt die Expression des alternativen Renins insbesondere am betroffenen Areal anstieg, wahrscheinlich durch verstärkte Bildung im Bereich der Endothelien sowie Myofibroblasten.12 Clausemeyer et. al17 zeigten, dass vier Tage nach dem Herzinfarkt die Expression des Exon1A Renins um das Vierfache anstieg, die des sekretorischen Renins war jedoch zu keinem Zeitpunkt nachweisbar.
Transgene Ratten mit Überexpression des Exon2-9 Renins, damit funktionell dem Exon1A Renin entsprechend, entwickelten weder eine kardiale Hypertrophie, Fibrose, Entzündungen, anderweitige Herzfehler noch einen Hypertonus.39 Diese Effekte sind vom sekretorischen Renin zu erwarten. Dabei war das Renin nicht nur im Zytosol lokalisiert, sondern auch in den Mitochondrien, jedoch nicht im Blutplasma.39

Um der Funktion weiter auf den Grund zu gehen, verglichen Wanka et. al31 die Auswirkung der Überexpression des sekretorischen Renins mit der des zytosolischen Renins in H9c2 Kardiomyoblasten der Ratte. Sie zeigten, dass die zytosolische Form, hier als Exon2-9 Renin bezeichnet, ebenfalls in den Mitochondrien lokalisiert ist. Eine Auftrennung der Zellkompartimente ergab eine Anreicherung der Reninaktivität in der Mitochondrienfraktion. Im Gegensatz dazu fand sich die stärkste Reninaktivität bei der Überexpression des sekretorischen Exon1-9 Renins in der Fraktion, in der sich kleine exozytotische Vesikeln befinden. Das sekretorische Renin verursachte in den H9c2 Zellen eine Hypertrophie, eine erhöhte Nekrose sowie eine verminderte Proliferation. Dem gegenüber senkte eine Überexpression des Exon2-9 Renins die Nekrose im Vergleich zur Kontrolle, steigerte allerdings die basale Apoptoserate, vermutlich durch eine mitochondrial bedingte Apoptose. Zusammenfassend beschrieben hier die Autoren die Wirkung des zytosolischen Renins als antinekrotisch, proapoptotisch und mit einer reduzierten enzymatischen Aktivität. Der genaue Wirkmechanismus blieb unklar.31 In einer weiteren Arbeit von Wanka et. al40 konnte eine Erhöhung der Expression des zytosolischen Renins in H9c2 Zellen nach 24 h Glucosedepletion gefunden werden. Die Renin-Aktivität sank allerdings unter dieser Konstellation. Eine Überexpression des zytosolischen Renins schützte die H9c2 Zellen vor Nekrose unter Glucosemangel, wohingegen der transiente Knock down zu einem gegenteiligen Ergebnis führte.40 Zellen mit Überexpression des zytosolischen Renins wiesen einen geringeren ATP-Gehalt, einen erhöhten Glucoseverbrauch sowie einen erhöhten Lactatproduktion auf, wobei die Effekte als nicht angiotensinvermittelt deklariert wurden.40 Nach Glucosedepletion kam es jedoch nicht zu einem ATP-Abfall im Vergleich zu den Kontrollen.40 Dieser antinekrotische Effekt war in primären Kardiomyozyten ebenfalls, aber erst nach 72 h Glucosedepletion, nachweisbar. Im ex vivo Langendorff System reduzierte sich bei transgenen Ratten mit Überexpression des zytosolischen Renins die Infarktgröße um 50 % im Vergleich zu Herzen von Kontrolltieren.40
1.3 Das Renin Binding Protein

1.3.1 RenBP als Inhibitor des Renins

Murakami et. al42 beschrieben eine Interaktion zwischen beiden Proteinen bei niedrigen Temperaturen von 4 °C durch Hinzugabe von disulfidbrückenspaltenden Detergenzien wie N-Ethylmaleimid (NEM) oder Natriumtetraphosphat.

Das entsprechende Gen wurde intensiv von Takahashi43, welcher das Protein als „Renin binding protein“(RenBP) bezeichnete, bei der Ratte untersucht. Es umfasst 11 Exons mit einer Gesamtgröße von neun Kilobasenpaare auf dem X-Chromosom. Exon 1 und Teile des Exons 2 stellen die untranslatierte Region dar. Im Exon 6 wird das Leuzin-Zipper Motiv beschrieben (siehe unten). Im letzten Exon liegt schließlich das carboxyterminale Ende. Im Wesentlichen umspannen die kodierenden Sequenzen der Exons jeweils etwa 76 bp bis 226 bp. Auch beim Menschen finden sich das RenBP-Gen auf dem X-Chromosom im Bereich Xq28.44 Es besitzt ebenfalls 11 Exons mit einer Größe jeweils zwischen 76 bp bis 225 bp und 10 Introns, die 83 bp bis 4.300 bp groß sind. Die Gesamtlänge des Gens beträgt circa 10.000 bp. Wenngleich durch Takahashi im humanen Genom sowie bei der Ratte43 verschiedene Promotor-
Regionen und Bindungsregionen für Transkriptionsfaktoren gefunden wurden45, so ist dessen Regulation nicht verstanden.

Takahashi et al46 beschreiben weiter die molekularen Eigenschaften des RenBP: Die aus der Transkription resultierende cDNA umfasst 1251 Nukleotide beim Menschen mit dem Translationsstart an Position 31 und 1257 bei der Ratte mit dem ersten ATG-Triplett an Stelle 18.46 Daraus resultiert ein Protein bestehend aus 417, bzw. 419 Aminosäuren mit einem berechnetem Gewicht von 47.746 Da für das humane Protein sowie 48.391 Da für das der Ratte.46 Mittels Western Blot werden allerdings meistens etwa 43 kDa bei beiden Spezies beschrieben.46 Beim Schwein liegt das detektierte Molekulargewicht 1 kDa darunter.46 Zwischen der humanen RenBP Sequenz und der der Ratte liegt eine Homologie von 85,7 \% vor. Das RenBP des Menschen und des Schweins sind zu 87,3 \% homolog.46 Schwein und Ratten RenBP ähneln sich etwa zu 82,8 \%.46 Wichtig im Protein ist eine hydrophobe Region von vier Leuzinresten an Position 185, 192, 199 bzw. 206, die bei allen drei Spezies an gleicher Stelle vorkommt.46 Bei der Ratte findet sich allerdings ein Methionin-Rest an Position 199.46 Diese Leuzinreste, vermutlich insbesondere Leuzin 185 und 19246, 47, bilden den zentralen Bestandteil für das Leuzinzipper-Motiv, das für die Dimerisierung zu einem Homodimer oder Heterodimer verantwortlich ist. Das RenBP Protein als Homodimer besitzt eine Größe von 68 kDa beim Menschen, 72 kDa bei der Ratte und 65 kDa beim Schwein.47 Eine potentielle Glykosylierungssequenz besteht an Position 228.48

Der isoelektrische Punkt liegt bei einem pH von etwa 4,9.49 Beim RenBP handelt es sich um ein zytosolisches Protein, bei dem bisher keine Assoziationen zu Renin Granula beschrieben wurden.49 Bohlmeyer et al beschreiben sogar eine Lokalisation im Sarkolemm humaner Kardiomyozyten bei Patienten mit idiopathischer, dilatativer Kardiomyopathie oder ischämischer Herzerkrankung im Endstadium.50 Bei dessen Studie an einer kleinen Gruppe von 14 Erkrankten konnte eine zur gesunden Kontrollgruppe signifikant erhöhte Expression des RenBP nachgewiesen werden.50 Die Expression in der Ratte findet in vielerlei Geweben statt, wie: Niere, Nebenniere, Lunge, Herz, Milz, Gehirn sowie in den Geschlechtsorganen Hoden und Ovar.46

Die physiologische Funktion dieses Proteins wurde aufgrund der bekannten Eigenschaft als Renin-Interaktionspartner in einer Beteiligung an bekannten Mechanismen des RAS gesucht (siehe Diskussion): Der Knock out (KO) des Renin Binding Proteins in Mäusen zeigte schließlich, dass diese Tiere nicht nur lebensfähig
sind, sondern eine physiologische Reninkonzentration ohne Anzeichen einer kardialen Hypertrophie aufwiesen.51 Selbst der Blutdruck war bei den Tieren normal. Sie schieden lediglich mehr Oligosaccharide aus.

Damit blieb die reale Interaktion zwischen dem zytosolischen RenBP und dem sekretorischen Renin sehr unwahrscheinlich.

1.3.2 RenBP als N-Acetyl-Glucosamin-Epimerase

Die physiologische Funktion wurde in einer zweiten Eigenschaft gesehen, die Maru et al. schon 1996 entdeckten, nämlich die einer N-Acetyl-Glucosamin-Epimerase.52 Das Enzym wurde bereits 1965 durch Gosh et. al beschrieben.53 Es katalysiert die Reaktion von N-Acetyl-Mannosamin zu N-Acetyl-Glucosamin in einer reversiblen Reaktion, dessen Gleichgewicht bei einem pH von 7,4 unter physiologischen Bedingungen in Richtung N-Acetyl-Glucosamin verschoben ist.52 Andere Substrate scheinen nicht verwendet zu werden.53 Interessanterweise beeinflussen Nukleotidtriphosphate die enzymatische Aktivität durch Bindung im mittleren Proteinteil erheblich.54 Insbesondere ATP, dATP, ddATP haben einen positiven Effekt auf die Aktivität des RenBP sowohl beim Menschen, der Ratte als auch beim Schwein.55 Beim RenBP der Ratte beobachtete man auch die Bindung von UTP, GTP, CTP oder TTP.55 ATP verzwanzigfacht die Epimerase-Aktivität und stabilisiert das Enzym in seiner homodimeren Form.52 Es schützt vor der Lyse durch Thermolysin.55 Das Homodimer wird als aktive Form angesehen, da disulfidbrückenspaltende Substanzen wie N-Ethylmaleimid (NEM), 5,5′-Dithiobis-2-nitrobenzoesäure (DTNB) oder Monoiodacetat zur Monomerisierung und damit zum Aktivitätsverlust führen.56 Es konnte durch Takahashi et. al nachgewiesen werden, dass die Heterodimerbildung mit Renin auch zur Inhibition der Epimerase führt.57 Die Monomerisierung durch NEM oder die Heterodimerisierung scheint ebenfalls durch ATP verhindert zu werden.58 Entscheidend sind molekular neben dem Leuzin-Zipper Motiv zehn konservierte Cysteinreste, insbesondere das Cystein an der Position 380 und teilweise auch an Position 104.56 Ein Aminosäureaustausch an diesen Positionen führte experimentell zum kompletten Verlust der Aktivität.56 Für die Nukleotidbindung scheint Serin an der Position 171 wichtig zu sein. Ein Austausch mit Glutamin resultierte hier in einer zehnfach verminderten ATP-Affinität.59
1.4 Hypothesen der Arbeit

1 - Renin und Renin Binding Protein bilden Heterodimere unter Glucosedepletion.

2 - Der RenBP Knockdown unter Glucosedepletion schützt vor Nekrose.

2 Reagenzien, Chemikalien

2.1 Für die Zellzucht

Zelltypen
- H9c2 - Kimes BW, Brandt BL, 1976 (bereitgestellt durch Prof. Peters)
- H9c2 – mit pIRES Plasmid (bereitgestellt durch Prof. Peters)
- H9c2 – mit pIRES Plasmid und Exon2-9 Renin (bereitgestellt durch Prof. Peters)

Kulturmedium
- DMEM - mit 25 mM Glukose, Na\(^+\)-Pyruvat, Glutamat (Gibco, Life Technologies, Deutschland)
- 10 % hitzeinaktiviertes Fetales Kälber Serum (FKS) (Gibco, Life Technologies, Deutschland)
- 100 U/ml Penicillin (Gibco, Life Technologies, Deutschland)
- 100 µg/ml Streptomycin (Gibco, Life Technologies, Deutschland)

Trypsin/EDTA Lösung
- 0,5 % Trypsin (Sigma Aldrich, Deutschland)
- 0,2 % EDTA (Roth, Deutschland)
- in Phosphat Buffered Saline (PBS) (Sigma Aldrich, Deutschland)

Einfriermedium auf 5ml
- 2,8 ml DMEM - mit 25 mM Glukose, Na\(^+\)-Pyruvat, Glutamat (Gibco, Life Technologies, Deutschland)
- 1,5 ml hitzeinaktiviertes FKS (Gibco, Life Technologies, Deutschland)
- 0,7 ml DMSO (Merck, Deutschland)

Zellzählung
- Trypanblau-Lösung 0,5 % (Sigma Aldrich, Deutschland)

Apparaturen
- Thoma Zellkammer
- HERAcell 240i CO\(_2\)-Inkubator (Thermo Fisher, USA)
- HERAsafe Sterilwerkbank (Thermo Fisher, USA)
- Kulturflaschen (Greiner Bio One, Österreich)

2.2 Für die Transfektion

Tranfektionsmedium
- DMEM - mit 25 mM Glukose, Na\(^+\)-Pyruvat, Glutamat (Gibco, Life Technologies, Deutschland)
- Accell siRNA Delivery Media (Accell) (Dharmacon, USA)
- Opti-MEM (Thermo Fisher Scientific, USA)

Transfektionsreagenz
- X-treme Gene HP (Roche, Schweiz)
- X-treme Gene 9 (Roche, Schweiz)
- Metafectene (Biontex Laboratories GmbH, Deutschland)
- Metafectene easy (Biontex Laboratories GmbH, Deutschland)
- Superfect (QUIAGEN, Deutschland)
- FuGENE HD (Promega, USA)
- Polyethylenimin (PEI) (Roth, Deutschland) 1mg/ml in Aqua destillata
siRNA
- siRNA gegen RenBP (SiGENOME SMARTpool, Rat RENBP M-095456-00-0010, Fisher Scientific, Dharmacon, USA)
- siRNA gegen RenBP (SASI Rn01, Sigma Aldrich, USA)
- scrambled siRNA (Fisher Scientific, Dharmacon, USA)
- siGlo Green (Fisher Scientific, Dharmacon, USA)

Glucosefreies Medium
- DMEM ohne Glucose (Gibco, Life Technologies, Deutschland)

Kulturmedium nach Transfektion
- DMEM mit 25 mM Glukose, Na\(^+\)-Pyruvat, Glutamat (Gibco, Life Technologies, Deutschland)
- 2,5 % FKS (Gibco, Life Technologies, Deutschland)

2.3 Für die Realtime-PCR

RNA Isolation
- RNeasy Mini Kit (QUIAGEN, Deutschland)

cDNA Synthese
- High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, USA)

PCR Kit
- SYBR Green Mix 2x (Stratagene, USA)
- Reference Dye (Stratagene, USA)

Primer (Life Technologies, USA)

<table>
<thead>
<tr>
<th>Name</th>
<th>Konzentration</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>18S</td>
<td>300 nM</td>
<td>Forward: CGGCTACCACATCCAAGGAA</td>
</tr>
<tr>
<td></td>
<td>900 nM</td>
<td>Reverse: GCTGGAATTACCACCCGGCT</td>
</tr>
<tr>
<td>β-Actin</td>
<td>900 nM</td>
<td>Forward: ACCCACACTGTGCCCATCTA</td>
</tr>
<tr>
<td></td>
<td>900 nM</td>
<td>Reverse: GCCACAGGATTCCATACCCA</td>
</tr>
<tr>
<td>YWHAZ</td>
<td>900 nM</td>
<td>Forward: CATCTGCAACGACGTACTGTCT</td>
</tr>
<tr>
<td></td>
<td>900 nM</td>
<td>Reverse: GACTGGTCCACAATTTTCAGT</td>
</tr>
<tr>
<td>GAPDH</td>
<td>900 nM</td>
<td>Forward: TTGTCAGCAATGCATCCTGC</td>
</tr>
<tr>
<td></td>
<td>900 nM</td>
<td>Reverse: CGGCATGTCAGATCCACAAC</td>
</tr>
<tr>
<td>RenBP</td>
<td>300 nM</td>
<td>Forward: TTGCTTTCTCATTGAGT</td>
</tr>
<tr>
<td></td>
<td>900 nM</td>
<td>Reverse: TCAAGTACCCACACCATTCC</td>
</tr>
</tbody>
</table>

Apparaturen
- RNA-Analysegerät (Gene Quant pro, GE Healthcare, USA)
- GENEamp 5700 (Applied Biosystems, USA)

Software
- DART PCR Version 1.0 (Data analysis for real-time PCR)

Sonstige Chemikalien
- RNA/DNA freies Wasser (Sigma-Aldrich, Deutschland)
- TE-Puffer, pH 8,0:
 - 10 mM Tris-HCL (Roth, Deutschland)
 - 1 mM EDTA (Roth, Deutschland)
 - in DNA/RNA freies Wasser
2.4 Proteinaufarbeitung und Proteingehaltbestimmung

PBS Puffer (10x)
- 80,06 g NaCl (Roth, Deutschland)
- 2,01 g KCl (Roth, Deutschland)
- 17,8 g Na₂HPO₄ (Roth, Deutschland)
- 2,72 g KH₂PO₄ (Roth, Deutschland)
- Ad 1 l Aqua dest
- pH 7,4

Lysis Puffer
RIPA (2x)
- 2 % Triton X 100 (FERAK, Deutschland)
- 1 % Natriumdesoxycholat (AppliChem, USA)
- 0,2 % SDS, (Roth, Deutschland)
- 0,5 % 40 mM EDTA (Roth, Deutschland)
- 4 % 50 mM EGTA (Roth, Deutschland)
- 4 % NaF (AppliChem, Deutschland)
- In PBS (10x PBS in Aqua dest, pH 7,4)

RIPA (1x)
- 50 % RIPA (2x),
- 0,1 % 1M Natriumvanadat (Sigma Aldrich, USA)
- 1 % 100 mM PMSF (Roth, Deutschland)
- 0,5 % 100 mM Dithiothreitol (DTT) (Roth, Deutschland)
- 5 µl Protease-Inhibitor Cocktail (Sigma Aldrich, USA)
- ad PBS zu 10 ml Gesamtmenge

NP-40
- 1 % Nonidet P-40 (NP-40) (AppliChem, Deutschland)
- 5 µl Protease-Inhibitor Cocktail (Sigma Aldrich, USA)
- In TBS (siehe Western Blot Materialien)

TES
- pH 7,2
- 100 mM TES (Roth, Deutschland)
- 10 mM EDTA (Roth, Deutschland)
- 0,1 g Neomycin (Roth, Deutschland)
- 80 ml Aqua bidest

Proteinbestimmung
- Roti Quant Gebrauchslösung (Roth, Deutschland)
- DEPC Wasser (Roth, Deutschland)

Proteinstammlösung
- TES Puffer
- Bovines Serum Albumin (BSA) (Sigma Aldrich, USA)

Apparaturen
- Platten-Reader: DYNATECH LABORATORIES MRX
- Optima TLX Ultracentrifuge (Beckmann/Coulter)
2.5 Experimente mit dem Nativen RenBP

Chemikalien
- Kupfer-II-Sulfat (Sigma Aldrich, USA)
- N-Ethylmaleimid (Calbiochem, Deutschland)
- Dithiothreitol (DTT) (Roth, Deutschland)
- CaCl₂ (Serva, Deutschland)
- Mercaptoethanol (Stratagene, USA)

Enzyme
- Renin (bereitgestellt durch Prof. Peters)
- Apyrase (Sigma Aldrich, USA)

2.6 Für den Western Blot

Puffer
- TBS
 - pH 7,4,
 - 50 mM NaCl (Roth, Deutschland),
 - 150 mM Tris (Roth, Deutschland)
 - ad Aqua dest.

- TBST
 - pH 7,4,
 - 1 % Tween 20 (AppliChem, USA)
 - 0,02 % NaN₃ (Merck, Deutschland)
 - In TBS

Probenpuffer
- Lämmli Puffer 4x (Roth, Deutschland)
- 5 ml Puffer (1,25 M Tris, pH 6,8)
- 2 ml Glycerol (Roth, Deutschland)
- 2 ml 0,1 % Bromphenol Blau Lösung (Sigma-Aldrich, USA)
- 1 ml Aqua bidest

Probenpuffer nativ 2x
- Lämmli Puffer 4x (Roth, Deutschland)
- 5 ml Puffer (1,25 M Tris, pH 6,8)
- 2 ml Glycerol (Roth, Deutschland)
- 2 ml 0,1 % Bromphenol Blau Lösung (Sigma-Aldrich, USA)
- 1 ml Aqua bidest

SDS haltige Gele
- Trenngel 10 %
 - 1,667 ml 30 % Acrylamid (29:1) (Roth, Deutschland)
 - 4 µl TEMED (Roth, Deutschland)
 - 40 µl Aqua bidest mit 10 % APS (Roth, Deutschland)
 - 1,25 ml 1,5 M Tris Puffer (pH 8,8)
 - 50 µl SDS (10 %) (Roth, Deutschland)

- Sammelgel 5 %
 - 0,833 ml 30 % Acrylamid (29:1) (Roth, Deutschland)
 - 5 µl TEMED (Roth, Deutschland)
 - 50 µl Aqua bidest mit 10 % APS (Roth, Deutschland)
 - 2,5 ml 1,25 M Tris Puffer (pH 6,8)
 - 50 µl SDS (10 %) (Roth, Deutschland)

Native Gele
- Trenngel 10 %
 - 1,667 ml 30 % Acrylamid (29:1) (Roth, Deutschland)
 - 2,084 ml Aqua bidest

- Sammelgel 5 %
 - 0,833 ml 30 % Acrylamid (29:1) (Roth, Deutschland)
 - 1,667 ml Aqua bidest
- 4 µl TEMED (Roth, Deutschland)
- 40 µl Aqua bidest mit 10 % APS (Roth, Deutschland)
- 1,25 ml Puffer (1,5 M Tris, pH 8,8)
- 5 µl TEMED (Roth, Deutschland)
- 50 µl Aqua bidest mit 10 % APS (Roth, Deutschland)
- 2,5 ml Puffer (1,25 M Tris, pH 6,8)

Kommerzielle Elektrophorese

- NuPAGE® Novex 4-12 % BisTris Protein Gels, 20 well
- NuPAGE® LDS Sample Buffer (4x)
- NuPAGE® Antioxidant
- NuPAGE® MES SDS Running Buffer (20x)

Kommerzielle native Elektrophorese (Serva, Deutschland)

- SERVA Gel N3-12 – 3-12 % Gradientengel
- SERVA Gel N4-16 - 4-16 % Gradientengel
- 10x Anodenpuffer für CN/BN
- 10x Kathodenpuffer für CN/BN
- 2x Probenpuffer für CN

Elektrophorese Puffer

- 10x SDS Page Puffer (Roth, Deutschland)

Größenstandards

- Precision Plus Protein Dual Color Standards (BioRAD, Deutschland)
- Serva Native Marker (Serva, Deutschland)

Gelanfärbung

- Coomassie Brilliant Blau (Roth, Deutschland)
- Ponceau ROT (AppliChem, USA)

Blotting Puffer

<table>
<thead>
<tr>
<th>Puffer</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anoden Puffer</td>
<td>20 ml Roti Blot A (Roth, Deutschland)</td>
</tr>
<tr>
<td></td>
<td>40 ml Methanol (Roth, Deutschland)</td>
</tr>
<tr>
<td></td>
<td>Ad Aqua dest. zu 200 ml</td>
</tr>
<tr>
<td>Kathoden Puffer</td>
<td>20 ml Roti Blot K (Roth, Deutschland)</td>
</tr>
<tr>
<td></td>
<td>40 ml Methanol (Roth, Deutschland)</td>
</tr>
<tr>
<td></td>
<td>Ad Aqua dest. zu 200 ml</td>
</tr>
<tr>
<td>Nativer Puffer</td>
<td>10x Towbin Puffer (Serva, Deutschland)</td>
</tr>
<tr>
<td></td>
<td>20 % Methanol (Roth, Deutschland)</td>
</tr>
<tr>
<td></td>
<td>Ad Aqua dest. zu 2 l</td>
</tr>
</tbody>
</table>

Blotting Membran

- PVDF (Roth, Deutschland)

Blocking Reagenz

- TBST
- Milchpulver (Real, Deutschland)
- BSA (Sigma-Aldrich, USA)

Antikörper-Puffer

- 3 % BSA (Sigma-Aldrich, USA)
- 0,001 % NaN₃ (Merck, Deutschland)
- In PBS (Verdünnungsreagenz 1) oder TBS (Verdünnungsreagenz 2)
Antikörper
- anti-RenBP - HPA000428-100UL (Sigma Aldrich, USA)
- anti-RenBP - H00005973-A01 (Abnova, Taiwan)
- anti-Renin (Inagami, zur Verfügung gestellt)
- anti-Beta-Aktin (NovusBiologicals, Deutschland)
- goat anti mouse HRP-konjugiert (NovusBiologicals, Deutschland)
- goat anti rabbit HRP-konjugiert (NovusBiologicals, Deutschland)

Stripping Reagenz
- Restore Western Blot Stripping Buffer (Thermo Fisher, Scientific, USA)

Lumineszenz
- ECL Reagenz (GE Healthcare, USA)

Detektion
- Detektor Film (GE Healthcare, USA)
- Entwickler (AppliChem, USA)
- Fixierungslösung (AppliChem, USA)

Apparaturen
- Elektrophoreskammer (SureLock Mini-Cell, Life Technologies, USA und Mini Pro Tean 2, BioRad, Deutschland)
- DC Power Supply PS 3000 (Hoefer, USA)
- TransBlot SD Semi-Dry Transfer Cell (BioRad, USA)
- Wet Blot Tank (BioRad, USA)

Sonstige Reagenzien
- Isopropanol (Roth, Deutschland)
- Filterpapiere (Roth, Deutschland)

2.7 NAGE Aktivitäts Assay

20 mM Na₂PO₄ Puffer
- 20 mM Na₂HPO₄ x 2H₂O (Roth, Deutschland)
- 20 mM NaH₂PO₄ x H₂O (Roth, Deutschland)
- pH 7,0 - Na₂HPO₄ Lösung mit der NaH₂PO₄ titrieren

Lysepuffer 100ml
- 100 ml 20 mM Na₂PO₄ Phosphatpuffer
- 1 mM EDTA (Roth, Deutschland)
- 0,05 % 2-Mercaptoethanol (Stratagene, USA)
- 10 µl Leupeptin (25 mg/ml) (Roche, Schweiz)

Tris/HCl-Puffer, pH 7,0
- 0,1 M Tris (Roth, Deutschland)
- 50 mM MgCl₂ x 6 H₂O (Roth, Deutschland)
- 50 mM N-Acetyl-Mannosamin (Roth, Deutschland)
- 5 mM ATP – je nach Testbedingung (Bio Vision, USA)
- pH 7,0 – mit HCl titrieren

0,1 mM Na₂PO₄ Puffer
- Für 500 ml
- 0,1 M Na₂HPO₄ x 2H₂O (Roth, Deutschland)
- 0,1 M NaH₂PO₄ x H₂O (Roth, Deutschland)
- pH 7,25 - Na₂HPO₄ Lösung mit der NaH₂PO₄ titrieren
Lösung I
- 10 ml Na₂PO₄ Puffer (0,1 M) pH 7,25
- 1 mM 4-Aminoantipyrin (Sigma-Aldrich, USA)
- 5,7 µl AHOX (0,5 U/ml) (Sigma-Aldrich, USA)
- 50 µl Peroxidase (5,0 U/ml) (Sigma-Aldrich, USA)
- 10 mg NaN₃ (Merck, Deutschland)

Lösung II
- 10 ml Na₂PO₄ Puffer (0,1 M) pH 7,25
- 2 mM HTIB (3-Hydroxy-2,4,6-Triiodbenzoesäure) (Sigma-Aldrich, USA)
- 10 mg NaN₃ (Merck, Deutschland)

Geräte
- Plattenreader: DYNATECH LABORATORIES MRX

2.8 Vitalitäts-Assays
ATP-Assay
- CellTiter-Glow Lumineszenz Viability Assay (Promega, USA)
- Plattenreader: EG&G Berthold

LDH-Assay
- Cytotoxicity Detection Kit (Roche, Schweiz)
- Triton X 100 (FERAK, Deutschland)
- Plattenreader: DYNATECH LABORATORIES MRX

2.9 Durchflusszytometrie
FACS Stammlösung
- 80 g NaCl (Roth, Deutschland)
- 3 g KCl (Roth, Deutschland)
- 2 g KH₂PO₄ (Roth, Deutschland)
- 2 g Na₂HPO₄ x 2H₂O (Roth, Deutschland)
- 10 g NaN₃ (Merck, Deutschland)
- Ad 1 l Aqua bidest

FACS Puffer
- 200 ml FACS Stammlösung
- 20 ml FKS (Gibco, Life Technologies, Deutschland)
- Ad 1,8 l aqua bidest

Materialien
- FACS Calibur Flow Cytometer (BectonDickinson, USA)

2.10 Fluoreszenzmikroskopie
2 % Paraformaldehydlösung (PFA)
- 2 g Paraformaldehyd (Sigma Aldrich, USA)
- 80 ml Aqua bidest.
- 3 Tropfen 1 M NaOH (Roth, Deutschland)
- bei 50 °C auf einer Heizplatte gelöst
danach 10 ml Aqua bidest. und 10 ml PBS (Sigma Aldrich, USA)
- pH 7,3-7,4
Block Lösung
- 2 % hitzeinaktiviertes FKS (Gibco, Life Technologies, USA)
- 0,2 % Fisch-Gelatine (Gelatin from cold water fish Skin, Sigma-Aldrich, USA)
- 2 % BSA (Sigma Aldrich, USA)
- in PBS (Sigma Aldrich, USA)

Antikörper
- anti-RnBP (Abnova, Taiwan)
- chicken-anti-mouse Alexa Flour 488 (Thermo Fisher, USA)
- anti-Renin (Inagami, bereitgestellt)
- chicken-anti-rabbit Alexa Flour 596 (Thermo Fisher, USA)
- DAPI (Sigma Aldrich USA) 1 mg/ml in Aqua bidest

Apparaturen, sonstiges
- 4 Kammer- LabTek Slide (Thermo Fisher, USA)
- Keyence BZ-9000, Floureszenzmikroskop
- Mounting Medium (DAKO, USA)
- Triton X-100 (FERAK, Deutschland)
- PBS (Gibco, Life Technologies, USA)

2.11 Software

Statistik
- Microsoft Excel 2013, (Microsoft, USA)
- Graph Pad Prism 7, (Graph Pad Software Inc, USA)

Text-/Bildverarbeitung
- Microsoft Word 2013, (Microsoft, USA)
- Microsoft Power Point 2013, (Microsoft, USA)
3 Methoden

3.1 Zellkultur

3.1.1 Allgemeines

3.1.2 Einfrieren und Auftauen der Zellen
Die für die Versuche benötigten H9c2 Zelllinien wurden bis zum Gebrauch in flüssigem Stickstoff gelagert. Dazu wurden die Zellen pelletiert, in einer Lösung aus 0,5 ml FKS und 0,5 ml Einfriermedium resuspendiert und in ein Kryo-Röhrchen überführt. In einer Kryobox mit Isopropylalkohol wurden die Zellen anschließend schrittweise über Nacht auf -70 °C abgekühlt und in flüssigem Stickstoff im CryoSafe gelagert.

3.1.3 Erhaltungskultur
Die Zellen wurden in Kulturflaschen mit 25 cm2 bzw. 75 cm2 Wachstumsfläche im Brutschrank bei 37 °C und 5 % CO\textsubscript{2}-Sättigung vermehrt. Durch einen Mediumswechsel nach 24 h wurden tote, non-adhäsente Zellen entfernt. Eine Vitalitätskontrolle geschah mikroskopisch. Bei Erreichen von 90 % Konfluenz wurde das Medium entfernt und nach zweimaligem Waschen mit 3 ml PBS wurde 4 ml oder

3.1.4 Zellzählung und Vitalitätsbestimmung durch Trypanblaufärbung

3.2 RenBP Knock down

3.2.1 Transfektion

Für den transienten Knock down des Renin Binding Proteins wurde die Methode der Lipofektion gewählt. Hierbei bilden polyanionische Chemikalien Komplexe mit der in die Zelle einzubringende RNA. Anschließend fügt man die Lipid-RNA-Komplexe in das Medium der kultivierten Zellen hinzu. Durch die Schwerkraft sinken diese auf den
Zellrasen, verbinden sich mit der Zellmembran und integrieren sich, wodurch die beinhaltende RNA in die Zelle freigegeben wird.

Um die Expression des Renin Binding Proteins zu reduzieren, verwendete man short interfering ribonucleotid acid (siRNA). Diese kurzen RNA-Sequenzen interagieren spezifisch mit der Renin Binding Protein mRNA, wodurch es zur Degradation dieser kommt.61 Damit erfolgt eine geringere Translation, die Menge an Zielprotein sinkt. Des Weiteren wurde scrambled siRNA eingesetzt, welche keinen spezifischen mRNA Interaktionspartner besitzen sollte. Die hierbei beobachteten Effekte sind demzufolge nur auf das Einbringen von Fremd-RNA in die Zellen zurückzuführen.

Für die Transfektion verwendete man siGlo-RNA oder siRNA gegen RenBP bzw. scrambled siRNA einer 10 µM Gebrauchslösung. Diese gebrauchsfertige siRNA wurde in einem Transfektionsreagenz suspendiert.

Generell wurden etwa 2×10^5 H9c2 Zellen 72 h vor Transfektionsstart in eine Kavität einer 6 Well-Platte kultiviert, um eine 80 % Zellkonfluenz zum Transfektionsbeginn zu erhalten. In jede Kavität wurden zum Transfektionsstart 200 µl der in Transfektionsmedium gelösten siRNA-Transfektionsreagenz-Komplexe pipettiert. Alle Reagenzien hatten Raumtemperatur. Im Allgemeinen wurde in einem Eppendorf-Röhrchen das Transfektionsreagenz mit entsprechendem Transfektionsmedium zu einem finalen Volumen von 100 µl zusammengeführt. In einem zweiten Gefäß vermischte man vorsichtig die benötigte siRNA Menge ebenfalls mit dem Transfektionsmedium zu insgesamt 100 µl. Nach Inkubation von 5 Minuten vereinte man die verdünnte siRNA mit der Transfektionsreagenz-Lösung durch langsames Mischen mit der Pipette. Anschließend inkubierte der Transfektionsansatz 20 Minuten bei Raumtemperatur. Parallel erfolgte eine Inkubation des Transfektionsreagenz im Transfektionsmedium ohne siRNA. Währenddessen wurde ein Mediumwechsel bei

Das finale Setting zum Knock down lag bei:

- 4 µl PEI
- siRNA gegen RenBP von Dharmacon
- opti-MEM als Transfektionsmedium
- Transfektionszeit 6 h.

Der weitere Zeitverlauf ist Abbildung 1 zu entnehmen.

Abbildung 1 Zeitverlauf der Transfektion.
T1: siGlo Analysen, Vorbereitung für die Vitalitätsassays T2: siGlo Analysen, Vorbereitung für die Vitalitätsassays, Expressionsbestimmung via RT-PCR und Western Blot, Bestimmung der Nekroserate. T3: Expressionsbestimmung via RT-PCR und Western Blot, Bestimmung der Nekroserate

3.2.2 Zellaufarbeitung für Expressionsbestimmungen

Mikroskop kontrolliert, in dem sich gelöste Zellen kugelig darstellten. Dann wurde die Zellsuspension ebenfalls in das Reagenzglas gegeben und das Well einmal mit 1 ml PBS gespült, um restliche Zellen mit in das Röhrchen zu übertragen. Vier Minuten zentrifugierte dieses bei 1000 g (g-Kraft). Der Überstand wurde dekantiert. Das Zellpellet konnte mit 500 µl PBS resuspendiert werden. Es schloss sich die Zellzählung und die Vitalitätsbestimmung mittels Trypanblau an (siehe 3.1.4). Um die Zellen vom Medium zu befreien, wurden sie erneut bei 14.000 U/min etwa acht Sekunden zentrifugiert, mit 500 µl PBS resuspendiert und abermals bei 14.000 U/min etwa acht Sekunden zentrifugiert. Das Pellet wurde mit flüssigem Stickstoff kryokonserviert und bis zur RNA- oder Proteinisolation bei -70°C gelagert.

3.3 Expressionsbestimmungen

3.3.1 RNA Isolation und cDNA Synthese

Für die Bestimmung der Genexpression benötigte man DNA. Deshalb erfolgte die Umwandlung mittels reverser Transkriptase im entsprechendem Kit (High Capacity cDNA Reverse Transcription Kit). 600 ng der RNA benötige man für die cDNA-Synthese. Nach Mischen der jeweiligen Komponenten des Kits mit Sigma-Wasser und der Probe gemäß Anleitung zu einem Gesamtvolumen von 20 µl inkubierte dieser Ansatz für 10 min bei 25 °C, dann für 2 Stunden bei 37 °C und abschließend für 5 min bei 85 °C, bevor es auf 4 °C temperierte wurde. Nach Zugabe von je 80 µl Sigma-Wasser wurde die cDNA bei -21°C eingefroren.

3.3.2 Realtime-Polymerase-Ketten-Reaktion
Mittels RT-PCR sollte die Expression des RenBP und damit der Effekt des Knock downs auf mRNA-Ebene bestimmt werden. Ausgangsprobe war dabei die in 3.3.1 gebildete cDNA aus den Proben.
Die Polymerase-Ketten-Reaktion (PCR) ist eine Methode zur Amplifikation von DNA. Grundlage bildet die Taq-Polymerase, welche bei hohen Temperaturen einen DNA Strang am 3'-Ende an spezifischen Startpunkten, den Primern, beginnend vervielfältigt. Der sich hierbei bildende DNA-Doppelstrang wird thermisch auseinander gelöst und bietet jeweils mittels Forward- und Reverse-Primer Anknüpfstellen zur erneuten Polymerase-Reaktion. Diese in Zyklen verlaufende Reaktion ist damit eine exponentielle Vervielfältigung von speziellen DNA-Abschnitten.62

Eine Sonderform stellt die RT-PCR dar, die eine Bestimmung der Anfangsmenge dieser speziellen Abschnitte erlaubt und durch den Gebrauch von cDNA als Substrat eine Aussage über die Expression gesuchter Gene gibt.63 Der Farbstoff SYBR Green I bindet dabei an den doppelsträngigen DNA-Produkten nach Amplifikation durch die Polymerase und kann unter Anregung mit blauem Licht bei einer Wellenlänge von $\lambda = 494$ nm ein detektierbares grünes Licht bei $\lambda = 592$ nm emittieren.63 Die Intensität ist dabei linear zur DNA-Menge.63 Unter Verwendung der cDNA-Probe erfolgt die Amplifikation ausgewählter Fragmente mit Anstieg der SYBR Green I Lumineszenz pro Vervielfältigungszyklus. Der C_t-Wert gibt dabei den Zyklus wieder, bei dem das Signal eine festgelegte Grenze ($Threshold$) überschreitet.63 Je höher dieser C_t-Wert desto niedriger ist die Ausgangs-DNA Menge für die zu amplifizierenden DNA-Abschnitte. Bezogen auf die cDNA bedeutet das eine initial niedrigere mRNA Menge und damit eine niedrigere Expression. Damit kann der C_t-Wert als Expressionsäquivalent gewertet werden.63

Zur weiteren statistischen Analyse und Fehlerberechnung bietet sich dieser als durch die Methode begründeter exponentieller Wert nicht an, weshalb hier auf den R_0 Wert zurückgegriffen wurde.64 Dieser steht mit dem $Threshold$ R_n und dem C_t-Wert nach der in Abbildung 2 abgebildeten Formel in Verbindung.

$$R_o = R_n \times 2^{-C_t}$$

\textbf{Abbildung 2} Formel zur Berechnung des R_0 Wertes.
$Threshold$: $R_n = 0.025$ bei den Experimenten. C_t = Zyklus, bei dem das Signal den $Threshold$ überschreitet.

Aufgrund von potentiellen Schwankungen und möglichen Messfehlern bedarf es einer Normierung der R_0 Werte, um eine Vergleichbarkeit der Proben zu gewährleisten. Hier bieten sich sogenannte Haushaltsgene an, deren Expression relativ stabil, das heißt unabhängig von anderen Einflüssen, ist. Die Expression des RenBP ergibt sich dann
als Verhältnis des \(R^0 \)-RenBP zu den \(R^0 \) Werten der Haushaltsgene, hier 18s, YWAHZ und Beta-Aktin. Welche im Einzelnen verwendet wurden, ist jeweils bei den einzelnen Versuchen vermerkt.

Für die RT-PCR wurden 27 µl der unter 3.3.1 hergestellten cDNA-Probe und 48 µl eines primerspezifischen Reaktionsgemisches zusammengeführt. Dieses bestand aus 37,5 µl 2x SYBR Green Master Mixes, 0,075 µl Reference Dye mit 300 nM Endkonzentration, den jeweiligen Primerpaaren (siehe 2.3 mit entsprechender Endkonzentration) sowie RNA und DNA freies Wasser, sodass sich ein Finalvolumen von 48 µl ergab. Die Primer wurden von der Arbeitsgruppe bereitgestellt.

Aus diesen 75 µl erfolgte eine Dreifachbestimmung mit 22 µl pro Well einer 96 Well PCR Platte. Damit gelang die Analyse der Probe mittels in Tabelle 1 dargestelltem PCR-Protokoll und Verwendung des GENEamp 5700 Cyclers.

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Temperatur</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50 °C</td>
<td>2 min</td>
</tr>
<tr>
<td>2</td>
<td>95 °C</td>
<td>10 min</td>
</tr>
<tr>
<td>3 – insgesamt 40 mal</td>
<td>95 °C</td>
<td>15 s</td>
</tr>
<tr>
<td></td>
<td>60 °C</td>
<td>1 min</td>
</tr>
</tbody>
</table>

Tabelle 1 Phasen der Realtime-PCR mit entsprechender Zeit und Temperatur

Die Messdaten wurden via DART-PCR Version 1.0 bearbeitet und der \(R^0 \) Wert unter einem Threshold von \(R_n = 0,025 \) ermittelt. Die Expression ergab sich als Ratio zwischen dem \(R^0 \) Wert für RenBP spezifische PCR und \(R^0 \) Wert für die entsprechenden Haushaltsgene. Bei der Verwendung mehrerer Haushaltsgene wurde ein mittels geometrischem Mittel bestimmter gemeinsamer \(R^0 \) Wert gebildet. Weitere Einzelheiten sind in der Methodenangelierung dargestellt. Die primären mathematischen Berechnungen erfolgten mittels Microsoft Excel 2013.

3.4 SDS-Western Blot

3.4.1 Probenvorbereitung

Die als Zellpellet eingefrorenen H9c2-Zellen aus den Transfektionsexperimenten wurden in Vorbereitung auf den Westen Blot mit 150 µl Lissispuffer resuspendiert. Der Aufschluss der Zellmembran vollzog sich in einer anschließenden Inkubation der Proben für 30 Minuten bei 4°C. Es schloss sich eine fünf minütige Zentrifugation bei 50.000 g und 4 °C an, um zytosolische von membranösen Bestandteilen zu trennen.

3.4.2 Bestimmung des Proteingehaltes der Proben nach Bradford

Für die Standardreihe wurden 200 µl der BSA-Stammlösung mit einer Proteinkonzentration von 400 µg/ml mit 600 µl DEPC-Wasser zu 100 µg/ml verdünnt und gemäß den Herstellerangaben als Standardreihe pipettiert.

<table>
<thead>
<tr>
<th>Verdünnung der Probe</th>
<th>Probe (µl)</th>
<th>DEPC-Wasser (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P\textsubscript{1} 1:100</td>
<td>2</td>
<td>198</td>
</tr>
<tr>
<td>P\textsubscript{2} 1:150</td>
<td>2</td>
<td>298</td>
</tr>
<tr>
<td>P\textsubscript{3} 1:200</td>
<td>2</td>
<td>498</td>
</tr>
</tbody>
</table>

Tabelle 2 Verdünnungsreihe der Probe

3.4.3 Protokoll

Die Quantifizierung eines Knock downs erfolgte unter dem Gebrauch des NuPAGE System von Invitrogen mit einem 4-12 % Gradientengel. 7 µl LDS Sample Buffer wurde mit der entsprechenden Proteinmenge und Aqua dest auf 20 µl Gesamtmenge gebracht, bei 70 °C für 10 min denaturiert und auf das Gradientengel aufgetragen. Die Elektrophorese erfolgte hier bei konstant 180 V. Dabei kam der NuPAGE® MES SDS
Running Buffer (20x) zum Einsatz. 50 ml sowie 950 ml Aqua dest wurden vermischt, wobei 200 ml davon mit 500 µl NuPAGE® Antioxidant für die innere Kammer der Elektrophorese-Kammer vorgesehen waren.

Wie auch im NuPAGE-System denaturierten die Proben bei 70 °C 10 min. Die Elektrophorese kam in der Kammer zusammengesetzt, mit jeweiligem Elektrophoresepuffer befüllt, die Probentaschen gespült und mit den Proben bestückt. Die Elektrophorese erfolgte auf Eis bei konstant 90 V, bis die Proben komplett ins Sammelgel übergegangen waren, anschließend bei konstant 150 V, wenn die selbst hergestellten Gele verwendet wurden. Unabhängig vom System war dieser Vorgang nach ausreichender Auftrennung des Proteinmarkers insbesondere im gesuchten Bereich für das RenBP zwischen 25 kDa und 75 kDa beendet.

Sofern nicht anders erwähnt, lag die Proteinmenge bei 30 µg pro Spur. Das Blotten erfolgte auf eine PVDF-Membran, die zunächst fünf Minuten bei Raumtemperatur in reinem Methanol eingelegt wurde, im Semidry Verfahren oder im WetBlot Verfahren.

Semidry Blot

Nach abgeschlossener Elektrophorese wurde das Gel 20 Minuten bei Raumtemperatur im Kathoden-Puffer inkubiert, ebenso wie drei Filterpapiere, dagegen die PVDF-Membran sowie drei weitere Filterpapiere im Anoden-Puffer. Der
Membranenstapel setzte sich wie folgt zusammen: drei Filterpapiere, PVDF-Membran, Gel, drei Filterpapiere, wenn zuerst die Anode anliegt. Anschließend wurden die Proteine aus dem Gel bei 300 mA, 25 V für 30 min auf die Membran übertragen. Die Zeiten sind unter den Resultaten vermerkt.

Wet Blot

Im Anschluss an die Elektrophorese wurde das Gel 20 Minuten bei Raumtemperatur im WetBlot-Puffer inkubiert, ebenso wie sechs Filterpapiere und die PVDF-Membran. Der Membranenstapel setzte sich wie folgt zusammen: drei Filterpapiere, PVDF-Membran, Gel, drei Filterpapiere, wenn zuerst die Anode anliegt. Anschließend wurden die Proteine aus dem Gel im mit WetBlot-Puffer gefüllten Blotting Tank bei 60 mA bei 4 °C für etwa 17 h auf die PVDF-Membran transferiert.

RenBP Nachweis

Statistische Auswertung mittels ImageJ Version 1.48

3.5 Nativer Western Blot

3.5.1 Aufschluss der Zellen

Für die Untersuchung von nativen Proteinen müssen die Proben schonend aufgearbeitet werden. Hierzu wurden Proteinpellets in etwa 300 µl Puffer resuspendiert, der neben TES-Puffer pro Milliliter Puffer 0,5 % Proteaseinhibitor enthielt. Es erfolgte ein Aufschluss der Zellmembranen durch fünf, kurze Ultraschallstöße, insgesamt dreimal. Nach jedem Stoß wurde die Probe kurz in Eis gestellt, um ein Erwärmen zu verhindern. Anschließend wurde bei 100.000 g 20 min bei 4 °C zentrifugiert. Der Überstand, als zytosolische Fraktion war nach Proteinbestimmung mittels Bradford Methode (3.4.2) Gegenstand weiterer Untersuchungen im Nativen Western Blot. Für die Experimente mittels Apyrase wurde ein Probenpuffer verwendet, der aus TBS und 8 mM Calciumchlorid bestand.
3.5.2 Inkubation der Proben mit NEM und Renin
Zunächst benötige man einen TES-Puffer mit 8 mM NEM. 200 µl dieses Puffers wurde mit 1200 µl TES-Puffer weiter verdünnt. Die Probe, welche idealerweise 50 µg Protein einhielt, wurde nun mit 5 µl verdünntem NEM-TES-Puffer, mit oder ohne 5 µl Renin und weiterem TES-Puffer zu einem Gesamtvolumen von 20 µl vermischt. Dem schloss sich eine Inkubation im Wasserbad bei 37 °C von 45 min an, bevor die Weiterverwendung im Nativen Western Blot stattfand.

3.5.3 Inkubation der Proben mit Apyrase und Renin
Apyrase ist ein Enzym der Kartoffel, welches calciumabhängig ATP zu ADP, bzw. ADP zu AMP spaltet. Es wurde eingesetzt, um die ATP-abhängige Bildung der RenBP-Renin-Heterodimere zu unterbinden. Für die Versuche wurde ein Apyrase-Äquivalent (100 Units) in 200 µl Sigma-Wasser mit 8 mM Calciumchlorid gelöst. 10 µl Apyrase, mit oder ohne 5 µl Renin wurden mit 50 µg nativer Probe und zusätzlich mit TBS-Puffer zu einem Endvolumen von 25 µl zusammengefügt. Danach inkubierte die Probe 45 Minuten bei 37 °C im Wasserbad. Anschließend erfolgte der Native Western Blot.

3.5.4 Protokoll
Das Prinzip des Nativen Western Blots entspricht dem des SDS-Western Blots. Allerdings werden die Proteine in den Proben nicht durch Hitze oder mittels chemischer Detergenzien denaturiert. Im Ablauf unterscheidet sich der Native Western Blot zum SDS-Western Blot nur in der Probenvorbereitung und der Elektrophorese. Hier wurden erneut selbst hergestellte Gele basierend auf dem Protokoll des SDS-Western Blots und später das System von Serva verwendet.

Die Herstellung der Gele erfolgte nach der in 2.6 gelisteten Zusammensetzung auf Eis im Ablauf analog des SDS-Western Blots (siehe 3.4.3). Die zu untersuchende Probe wurde mit 10 µl 2x Probenpuffer sowie Aqua bidest auf 20 µl aufgefüllt und kurz mit der Pipette gemischt. Die Elektrophoresekammer wurde zusammengesetzt, mit Towbin-Puffer als Elektrophoresepuffer befüllt, die Probentaschen gespült und abschließend mit den Proben bestückt. Die Elektrophorese erfolgte auf Eis bei konstanter Spannung, bis die Lauffront den Gelboden erreicht hatte. Näheres findet sich unter Resultate (siehe 4.1.2.).

Zur Elektrophorese mit dem System von Serva wurden vorbereitend 700 ml aqua dest. auf 4 °C gekühlt. In Abhängigkeit von der Probenmenge, die durch das limitierte

3.6 Durchflusszytometrie mit siGlo

- die vorwärts gerichtete Streustrahlung als Maß für die Zellgröße
- die Seitwärtsstreuung als Maß für die Granulierung der Zellen
- die Fluoreszenzintensitäten der Zellen, die von den Detektoren FL-1 und FL-2 ermittelt wird

Anschließend erfolgt eine Darstellung der Zellen gemäß ihrer Größe und Granulierung in einem zweidimensionalen Diagramm. Diese Darstellung ermöglicht durch das sogenannte „Gaten“ der Zellen den Ausschluss von Zelldebris vor der Auswertung. Durch Auftragen der Zellzahl gegen die Fluoreszenzintensität (logE) in einem Histogramm kann die prozentuale Anzahl fluoreszierender Zellen und die Fluoreszenzintensität als Maß für die Konzentration und damit Transfektionseffizienz ermittelt werden.

Bei dem hier verwendeten Protokoll handelte es sich um ein laborinternes. Die nach 3.1.1 kultivierten H9c2 Zellen wurden entsprechend dem Experiment nach der Methode 3.2.1 mit den unterschiedlichen Transfektionsreagenzien und 100 nM Endkonzentration an siGlo für 24 h transfiziert. Anschließend erfolgte die Trypsinierung und Zellzählung bzw. Vitalitätsbestimmung nach 3.1.4. Die Zellen wurden entsprechend als Zellpellet für 4 min bei 1000 g zentrifugiert und anschließend im FACS-Puffer resuspendiert, sodass eine Zellkonzentration von 1 x 10^6/ml vorlag. 100
µl davon wurden in einem separaten FACS-Röhrchen mittels Durchflusszytometer analysiert.

3.7 Vitalitäts-Assays

3.7.1 Kulturvorbereitung für Vitalitäts-Assays

Nach einer Inkubationsphase von 2 Stunden bei 37 °C im CO₂-Inkubator wurde das Medium der Zellen entfernt und den Zellen entweder 100 µl DMEM-Komplett-Medium oder DMEM-Medium ohne Glukose für weitere 22 h zugesetzt. Nach Inkubation im CO₂-Inkubator schlossen sich die nachfolgend beschriebenen Vitalitätsassays an.

3.7.2 Cell Viability Assay

Der Assay wurde mit speziellen Lumineszenz-geeigneten 96-Loch Platten durchgeführt, in die die vorbehandelten H9c2 Zellen transferiert wurden. Nach Inkubation unter Kontrollbedingungen und Glukosedepletion im CO₂-Inkubator wurden pro Kavität der 96-Loch Platte 100 µl der CellTiter Glo Lösung zugesetzt. 5 minütiges Schütteln der Platte führte zu einer vollständigen Lyse der Zellmembran und damit zur ATP Freisetzung, so dass anschließend die Lumineszenz am Luminometer detektiert
werden konnte. Für die Auswertung wurden die jeweiligen Dreifachbestimmungen gemittelt.

3.7.3 Zytotoxizitäts-Assay

Für diesen Assay wurden in der Vorbereitung pro Probe je 6 Kavitäten mit jeweils 10.000 Zellen beladen, davon dienten ein Dreifachansatz zur Ermittlung der spontanen LDH-Freisetzung während der andere Dreifachansatz zur Erfassung der Gesamt-LDH Aktivität verwendet wurde. Nach Inkubation im CO₂-Inkubator unter Kontrollbedingungen oder Glukosedepletion wurden jeweils drei Kavitäten zusätzlich 100 µl DMEM-Medium (spontane LDH-Freisetzung) oder 100 µl 1 % Triton X100 in DMEM Medium (Lysemedium) für 1 h zugesetzt. Nach Inkubation im CO₂-Inkubator wurden je 100 µl der Kulturüberstände auf eine neue 96-Loch Platte übertragen. Als Negativkontrollen dienten 100 µl Medium mit und ohne Glukose (Medium-Leerwert) bzw. eine 1:1 Mischung aus Medium und Triton X100 haltigem Medium (Lyse-Leerwert). Anschließend wurde pro Kavität 100 µl des Reaktionsgemisches aus Catalyst und Dye Solution (Verhältnis 250 µl zu 11,25 ml) pipettiert und die Proben im Dunklen bei Raumtemperatur für etwa 10 min inkubiert. Zuletzt wurde die optische Dichte der Proben bei 520 nm im ELISA Reader gemessen. Der Mittelwert aus den drei Messwerten nach Zelllysis abzüglich des Lyse-Leerwertes ergab den Gesamt-LDH-Gehalt einer Probe. Der Durchschnitt der anderen drei Messwerte nach Abzug des Medium-Leerwertes ergab die spontane LDH-Freisetzung der Probe. Aus dem Quotienten der Mittelwerte der LDH-Freisetzung zum LDH-Gehalt resultierte dann die multipliziert mit 100 die LDH-Ratio in Prozent, was ein Äquivalent für die Nekroseraten bedeutete.
3.8 Immunfloureszenz

Die nachfolgenden Arbeitsschritte entsprechen einem laborinternen Protokoll. Dabei werden zunächst 2x104 Zellen in 500 µl Kulturmedium auf ein 4-Kammer-LabTek Slide pipettiert und für 3 Tage bei 37 °C im CO\textsubscript{2}-Inkubator inkubiert. Vor der Mikroskopie unterlagen die Zellen einem RenBP Knock down und wurden unter Kontrollbedingungen bzw. Glukosedepletion kultiviert.

In der Immunfloureszenz zeigte sich dabei das DAPI als Ladekontrolle blau und färbte nur die Zellkerne an. Unter dem hier verwendeten Filter am Mikroskop für eine Wellenlänge von 495 nm entsprach der Nachweis des RenBP einem grünen Signal, bei einem Filter von 594 nm der Nachweis des Renins einem roten Signal.

Die einzelnen Bilder wurden nicht nachbearbeitet. Im Overlay Modus gelang die kombinierte Darstellung der Signale. Eine Färbung zu gelb entsprach dabei einer Kolokalisation.

Die Durchführung der Immunhistochemie erfolgte durch Dr. rer. nat. Phillipp Lutze im Rahmen dieses Projektes und wurde freundlicherweise von ihm zur Verfügung gestellt.

3.9 Aktivitäts-Assay Renin Binding Protein

Vor Durchführung des Assays wurden die H9c2, pIRES und Ren(2-9) Zellen unter Kontrollbedingungen bzw. unter Glucosedepletion für 24 h bei 37 °C inkubiert. Nach Trypsinierung, Bestimmung der Zellzahl und Vitalität (siehe Punkt 3.2.2) sowie Zentrifugation wurden die Zellpellets bei -20 °C bis zur Bestimmung der NAGE-Aktivität gelagert. Die Zellen wurden zur Messung in 100 µl Na\textsubscript{2}PO\textsubscript{4} Puffer resuspendiert. Mittels zehn Sekunden andauernden Ultraschallstößen kam es zum Aufschluss der Zellen. Anschließend zentrifugierte die Probe bei 20.000 g 20 min unter Kühlung auf 4 °C. Dreimal 20 µl des so erhaltenen Überstandes, von dem parallel der Proteingehalt nach der Bradford Methode bestimmt wurde, überführte man jeweils in ein Reaktionsgefäß. Auf diese Menge wurden zusätzlich 80 µl des N-Acetyl-Mannosamin-
haltigen TRIS/HCL Puffers, der je nach Testbedingung entweder kein oder 5 mM ATP enthielt, hinzugegeben. Das Gemisch inkubierte bei 37 °C für vier Stunden. Anschließend inaktivierte man durch Hitze die aktiven Enzyme, worauf sich dann eine weitere, ein minütige Zentrifugation bei 14.000 g anschloss. In einem neuen Eppendorf-Gefäß mischte man 50 µl dieser Probe mit jeweils 100 µl der Lösung I und Lösung II. Die dadurch initiierte Nachweisreaktion dauerte weitere 60 min bei 37 °C. Abschließend wurde die Absorption bei 520 nm von 100 µl dieses Gemisches im ELISA-Reader gemessen.

Die Durchführung der Experimente im Rahmen des Projektes erfolgte durch Dr. rer. nat. Heike Wanka. Die Daten wurden freundlicherweise von ihr zur Verfügung gestellt, nicht jedoch ausgewertet.

3.10 Statistische Auswertung

Beim Vergleich von zwei Gruppen wurde ein zweiseitiger t-Test durchgeführt. Die Auswertungen der Expressionen erfolgten als Ratio-t-Test nach Logarithmieren der einzelnen Messwerte.

Beim Vergleich eines Merkmals in mehreren Gruppen wurde eine One Way ANOVA Analyse mit post hoc Test nach Turkey verwendet.

Das Signifikanzniveau belief sich auf mindestens p < 0,05 zur Ablehnung der Ausgangshypothese, dass keine Unterschiede zwischen den Gruppen bestehen.
4 Resultate

4.1 Methodenabtischung

4.1.1 Nachweis des RenBP mittels SDS-Western Blot

Der SDS-Western Blot diente dem Nachweis des Renin Binding Proteins in H9c2 Zellen, wobei der RenBP Knock down die Antikörperkontrolle darstellte. Grundlage für die Durchführung war ein bestehendes Protokoll, welches modifiziert wurde (siehe 3.4.3.). Der elektrische Proteintransfer geschah auf eine PVDF-Membran. Es sollte nach Denaturierung des Proteingemisches durch SDS und Hitze nur eine Bande im Western Blot zur Darstellung kommen, wobei sich deren Masse zwischen 43 kDa und 48 kDa belaufen sollte. Tabelle 3 gibt einen Überblick über einzelne Veränderungen, die zur Optimierung des RenBP Western Blots eingesetzt wurden.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysis-Puffer</td>
<td>RIPA</td>
</tr>
<tr>
<td></td>
<td>TES</td>
</tr>
<tr>
<td></td>
<td>NP-40</td>
</tr>
<tr>
<td>Blotting-Verfahren</td>
<td>Semidry</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
</tr>
<tr>
<td>Blocking-Reagenz</td>
<td>5 % Milchpulver in TBST</td>
</tr>
<tr>
<td></td>
<td>4 % BSA in TBST</td>
</tr>
<tr>
<td>Blocking-Zeit</td>
<td>4 h bei Raumtemperatur</td>
</tr>
<tr>
<td></td>
<td>14 h bei 4 °C</td>
</tr>
<tr>
<td>Anti-RenBP</td>
<td>SIGMA 1:500 in Verdünnungsreagenz 1</td>
</tr>
<tr>
<td></td>
<td>Abnova 1:500 in Verdünnungsreagenz 1</td>
</tr>
<tr>
<td></td>
<td>Abnova 1:500 in Verdünnungsreagenz 2</td>
</tr>
<tr>
<td>Inkubationszeit anti-RenBP</td>
<td>4 h bei Raumtemperatur</td>
</tr>
<tr>
<td></td>
<td>14 h bei 4 °C</td>
</tr>
</tbody>
</table>

Tabelle 3 Übersicht über die einzelnen Testparameter im SDS-Western Blot. Dick markiert die hierunter optimalste Zusammensetzung

Zunächst wurden die Proben, Nierenextrakte der Ratte, mit RIPA-Puffer aufgearbeitet und mittels Semidry-Verfahren nach der Elektrophorese auf die PVDF-Membran übertragen. Das Blocking erfolgte mittels Milchpulver-Lösung, die Inkubation mit anti-RenBP von Sigma. Im Ergebnis zeigten sich zunächst viele unspezifische Banden. Dies änderte sich nicht durch Variation der entsprechenden Inkubationszeiten der Blocking-Reagenz oder des Antikörpers. Hiernach wurden die Antikörperinkubation auf 14 h bei 4 °C und der Vorgang des Blockings auf 4 h bei Raumtemperatur
festgesetzt. Aufgrund der unzureichenden Ergebnisse wurde auf eine Abbildung der Blots verzichtet.

Abbildung 3 SDS Western Blot – mit H9c2 Zelllysaten
A anti-RenBP Abnova: Spur 1 (10 µg), 2 (30 µg), 3 (50 µg) Aufnahme in RIPA-Puffer nach Ultraschalllyse, Spur 4 (10 µg), 5 (25 µg), 6 (30 µg) und 7 (50 µg) Aufnahme in RIPA-Puffer, Blocking-Reagenz 5 % Milchpulver. B anti-RenBP Abnova: Spur 1 (10 µg), 2 (12,5 µg), 3 (15 µg) Aufnahme in TES-Puffer, Spur 4 (10 µg), 5 (25 µg), 6 (30 µg) und 7 (50 µg) Aufnahme in NP-40 Puffer, Blocking-Reagenz 5 % Milchpulver. C anti-RenBP Sigma: in allen Spuren 30 µg Protein, Blocking-Reagenz 5 % Milchpulver. D anti-RenBP Abnova: in allen Spuren 30 µg Protein, Blocking-Reagenz 4 % BSA.
Proteinmarker (M) von oben nach unten – 250 kDa, 150 kDa, 75 kDa, 50 kDa, 37 kDa, 25 kDa, 20 kDa, 15 kDa, 10 kDa, rote Zahlen entsprechend ausgewählte Banden in kDa des Markers. Pfeile markieren Bande des RenBP

Aus diesen Experimenten lässt sich folgendes ableiten: Der Antikörper von Sigma, aber auch der von Abnova zeigten übereinstimmend eine Bande im Bereich zwischen 37 kDa und 50 kDa, die mit der berechneten Größe von 43 kDa bis 48 kDa des RenBP vereinbar ist. Das optisch spezifischere Bandenmuster konnte mit dem Antikörper von Abnova gefunden werden, weshalb dieser in den Knock down Untersuchungen verwendet wurde. Allerdings blieb noch unklar, warum ein zweites größeres Protein durch den Antikörper detektiert wurde, wenngleich sich das Ergebnis des Western Blots mit dem des Herstellers in HeLA-Zell-Extrakten deckte. Dieser hat zusätzlich beim rekombinanten Protein eine Größe von 37,5 kDa beschrieben, welche auch in den hier durchgeführten Versuchen gefunden werden konnte. Die Spezifität des Antikörpers kann aus den Proben des Knock downs entnommen werden (Abbildung 8).
4.1.2 Detektion des RenBP im Nativen Western Blot

Basierend auf den Erfahrungen beim SDS-Western Blots wurden auch für den Nativen Western Blot die Versuchsbedingungen optimiert. In Tabelle 4 sind die jeweiligen Parameter dargestellt.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Eigene SDS frei Gele mit 10 % Acrylamid Trenngel \SERVA Gradienten Gel 4-16 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gelelektrophorese-System</td>
<td>\SERVA Gradienten Gel 4-16 %</td>
</tr>
<tr>
<td>Elektrophorese-Spannung</td>
<td>2 h, 3 h, 4 h, 5 h</td>
</tr>
<tr>
<td>Elektrophorese-Zeit</td>
<td>SemiDry</td>
</tr>
<tr>
<td>Blotting</td>
<td>Wet</td>
</tr>
<tr>
<td>Blotting-Zeit</td>
<td>30 min, 45 min, 90min (Semidry)</td>
</tr>
<tr>
<td>Blotting-Puffer</td>
<td>RotiBlot</td>
</tr>
<tr>
<td>Blocking-Reagenz</td>
<td>Towbin-Puffer mit 20 % Methanol</td>
</tr>
<tr>
<td></td>
<td>5 % Milchpulver in TBST</td>
</tr>
<tr>
<td></td>
<td>4% BSA in TBST</td>
</tr>
</tbody>
</table>

Tabelle 4 Übersicht über die einzelnen Testparameter im Nativen Western Blot. Dick markiert die hierunter optimalste Zusammensetzung

Zunächst erfolgte die Herstellung eigener Gele für die Elektrophorese und die Probenaufarbeitung gemäß 3.5.4. Hierbei konnte jedoch keine Antikörperreaktion im Western Blot beobachtet werden, sodass das Protokoll reevaluiert wurde. Die erste Annahme war, dass die sichtbare Lauffront während der Elektrophorese nicht der Laufgeschwindigkeit der Proteine entsprach und damit eine unzureichende Elektrophorese stattfand. Zur Überprüfung dieser Vermutung wurde die Elektrophoresezeit auf 3 h bzw. 5 h verlängert, wobei zusätzlich eine konstante
Spannung von 150 V anlag. Hier zeigte sich bei den Coomassie-gefärbten Gelen eine stärkere Auftrennung der Probe bei 5 h. Die Elektrophoresedauer wurde auf 4 h festgesetzt (Abbildung nicht dargestellt).

Der anschließend durchgeführte Native Western Blot erbrachte erneut keinen Nachweis des RenBP in H9c2 Zellextrakten (Abbildung nicht dargestellt). Es erfolgte die Optimierung der Blotting-Prozedur. Zur besseren Visualisierung des nicht basal angefärbten nativen Proteinmarkers und als Erfolgskontrolle des Blotvorgangs wurde das Färben der Membran mit Ponceau-Rot etabliert. Des Weiteren wurde eine Verlängerung der Transferzeit auf 45 min und 90 min untersucht. Außerdem erfolgte das Blotting mit Towbin-Puffer mit 20 % Methanol. Dies führte zu einem deutlich besseren Blotting-Ergebnis bei marginalen Unterschieden zwischen 45 min und 90 min Transferzeit (Blot nicht dargestellt).

Diese Durchführung des Nativen Western Blotes wurde schließlich bei den weiteren Experimenten zur Untersuchung des Dimerisierungsgrades, welche in 4.2.2 näher erläutert werden, verwendet. Im Zuge des fehlenden Nachweises von Renin im Nativen Western Blot im bisher etablierten SemiDry-Verfahren wurde der Wet Blot
getestet (siehe Abbildung 4C), mit deutlich besseren Ergebnis, jedoch ohne Nachweis von Renin in den H9c2 Zellen (entwickelter Blot nicht dargestellt). Dies zeigt sich in der stärkeren Intensität des Proteinmarkers bei der Ponceau Rot Färbung (siehe Abbildung 4C).

4.1.3 Lipotransfektion von siRNA in H9c2 Zellen

4.1.3.1 Effizienz verschiedener Transfektionsreagenzien

Als Transfektionsreagenz wurden getestet: X-treme Gene HP, X-treme Gene 9, Metafectene, Metafectene easy, Superfect, FuGENE HD und Polyethylенимин (PEI). Gemäß dem Protokoll nach 3.2.1 wurden 2 x 10^5 Zellen transfiziert. DMEM ohne

Abbildung 5 Transfektion von siGlo in H9c2 Zellen mit 10µl entsprechender Transfektionsreagenz pro 2ml Medium und 50nM siGlo. Transfektionszeit 24h. (A) Zellzahl, (B) Vitalitätsbestimmung (C) Messung der Anzahl der siGlo positiven Zellen in %. Signifikanz bezogen zu: *- Kontrolle, §-X-treme Gene 9, $-Xtreme Gene HP, &-Superfect (D) Signalintensität n=6 für die Kontrolle, je n=3 für die transfizierten Zellen. Signifikanztest: OneWay Anova, Turkey post Test, p<0,05: *, §, $, &; p<0,01: **, §§, $$, &&; p<0,001: ***, §§§, $$$, &&&

Auf statistischer Ebene waren die Unterschiede in den Mittelwerten der Zellzahlen mittels One Way Anova nicht signifikant, hinsichtlich der Vitalität (p<0,001), Effizienz (p<0,001) und Intensität (p<0,001) schon. Mit Superfect, X-treme Gene 9 und X-treme
Gene HP transfizierte Zellen wiesen bei guter Vitalität eine relevant niedrige Effizienz mit begleitend niedriger Intensität auf, weshalb sie für die weiteren Experimente nicht in Frage kamen. Dahingegen konnte mittels Metafectene sowie Metafectene easy eine deutlich größere Menge an siGlo in die Zellen eingebracht werden. Allerdings sank signifikant die Vitalität der Zellen auf durchschnittlich nur 72 % (Metafectene) und 79 % (Metafectene easy), sodass auch diese Transfektionsreagenzien ausgeschlossen wurden. Mit PEI sowie FuGENE HD behandelte Zellen zeigten sowohl eine unveränderte Vitalität zur Kontrolle, als auch eine hohe Effizienz, die sich mit Ausnahme von Metafectene/Metafectene easy relevant von den anderen Gruppen unterschied. FuGENE HD führte durchschnittlich zur höchsten Intensität, welche sich auch statistisch im Vergleich zu den anderen Gruppen als bedeutsam ergab.

Deshalb kamen primär FuGENE HD, aber auch PEI, für die weiteren Experimente infrage.

4.1.3.2 siRNA Interferenz gegen das RenBP – siRNA von Sigma

Die Vitalität der Zellen stellte sich 24 h nach Transfektionsstart in allen drei Gruppen gleich gut, mit über 90 % im Mittel, dar. Im weiteren Verlauf nahm diese in der siRNA Gruppe auf durchschnittlich 89,5 % (48 h) bzw. 88,33 % (72 h) ab. Das Ergebnis zeigte sich jedoch nicht statistisch signifikant. Hinsichtlich der Expression dienten β-Aktin sowie 18s als Referenzgene. Ein R₀ Quotient wurde zwischen RenBP und jeweils 18s, β-Aktin sowie dem geometrischen Mittel beider Haushaltsgene bestimmt. Hier ergab sich kein Unterschied in der Expression. Im Western Blot konnte keine Verminderung der RenBP Menge gefunden werden (Ergebnis nicht dargestellt). Zusammenfassend konnte kein Knock down etabliert werden.
Die siRNA Menge wurde aufgrund nachgewiesener guter Transfektionseffizienz auf 100 nM erhöht. Hier zeigte sich 72 h nach Transfektionsstart bei n=1 auf mRNA- als auch auf Protein-Ebene keine Veränderung. Deshalb wurde entschieden, eine andere siRNA zu testen. Aufgrund ähnlicher Tendenzen zwischen den beiden Haushaltsgenen sowie aus Effizienzgründen wurde im Folgenden nur 18s als Referenzgen verwendet. Außerdem war der Nachweis auf Proteinebene des Knock downs im Western Blot bedeutender als auf mRNA-Ebene.

Tabelle 5: Transfektion von 50 nM RenBP-siRNA (Sigma), 10 µl FuGENE HD. Transfektionsdauer 24 h. Vitalitätsbestimmung mittels Trypanblau-Methode. RenBP Expression mittels Realtime-PCR. Expression als Normierung auf 18s, β-Aktin sowie dem geometrischen Mittel von 18s und β-Aktin als Quotient $E = \frac{R_0}{R}$ Haushaltsgen. Angaben als Mittelwert und Standardabweichung.

4.1.3.3 siRNA Interferenz gegen das RenBP – siRNA von Dharmacon

Die vorangehenden Untersuchungen zeigten, dass mittels nachweislich effizientem FuGENE HD und siRNA von Sigma kein Knock down des RenBP zu erreichen war. Deshalb wurde siRNA gegen RenBP des Herstellers Dharmacon verwendet, mit einer initialen Dosis von 60 nM. Die hiermit getesteten Versuchsanordnungen sind Tabelle 6 zu entnehmen. Dabei ist die Kontrollgruppe diejenige H9c2 Zellpopulation, welche

<table>
<thead>
<tr>
<th>Versuchs-Nr:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>siRNA (nM)</td>
<td>60</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Medium</td>
<td>DMEM</td>
<td>DMEM</td>
<td>Accell</td>
<td>Opti-MEM</td>
</tr>
<tr>
<td>Tf. Reagenz</td>
<td>10 µl FuGENE HD</td>
<td>10 µl FuGENE HD</td>
<td>8 µl FuGENE HD</td>
<td>8µl FuGENE HD</td>
</tr>
<tr>
<td>T1 (h)/ T2 (h)</td>
<td>24/48</td>
<td>24/24</td>
<td>6/48</td>
<td>6/48</td>
</tr>
</tbody>
</table>

Vitalität (%)

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>4</th>
<th>5</th>
<th>5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td></td>
<td>95±2,45</td>
<td>95,8±2,39</td>
<td>96,8±2,17</td>
<td>97±4,24</td>
</tr>
<tr>
<td>siRNA</td>
<td></td>
<td>92,75±3,30</td>
<td>92,8±5,63</td>
<td>94,8±3,27</td>
<td>96±2,83</td>
</tr>
<tr>
<td>Unbeh. Zellen</td>
<td></td>
<td>93,75±2,22</td>
<td>96±1,58</td>
<td>95,6±2,07</td>
<td>97±4,24</td>
</tr>
</tbody>
</table>

Expression RenBP/18s (x10⁻⁴)

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td></td>
<td>10,85±12,82</td>
<td>31,2±8,60</td>
<td>2,55±2,07</td>
<td>3,25±1,14</td>
</tr>
<tr>
<td>siRNA</td>
<td></td>
<td>4,9±4,50</td>
<td>25,2±3,20</td>
<td>2,05±1,17</td>
<td>1,93±0,72</td>
</tr>
<tr>
<td>Unbeh. Zellen</td>
<td></td>
<td>19±25,2</td>
<td>23,9±12,2</td>
<td>3,03±3,22</td>
<td>6,97±4,72</td>
</tr>
</tbody>
</table>

Tabelle 6 Transfektionen mit RenBP-siRNA (Dharmacon) und FuGENE HD

Nach einer Transfektion von 60 nM siRNA gegen RenBP (Versuch 1, Tabelle 6) zeigte sich 48 h nach Transfektion in allen drei Gruppen eine gute Zellvitalität von über 90 % ohne signifikanten Unterschied untereinander. Die Expression in der Knock down-Gruppe stellte sich zur Kontrolle vermindert dar, welche jedoch aufgrund der Streuungsrate mit p = 0,46 (t-Test) nicht signifikant war.

Im zweiten Ansatz wurde ähnlich den Versuchen zur siRNA von Sigma die Konzentration der siRNA auf 120 nM gesteigert (Versuch 2, Tabelle 6). 24 h nach Transfektion ergaben sich hier keine Unterschiede in der Vitalität. Auf RNA-Ebene war kein Knock down ersichtlich (siRNA vs. Kontrolle p = 0,48 und unbehandelte Zellen vs. Kontrolle p = 0,35, jeweils t-Test), woraus sich die Notwendigkeit der weiteren Optimierung ableiten ließ. Im Hinblick auf die Analysen der Nekroserate wurde der
Zeitpunkt der ersten Expressionsbestimmung auf mindesten 48 h nach Transfektionsbeginn festgelegt.

Nach Herstellerangaben sind weniger als 10 µl FuGENE HD pro 100 µl Transfektionsmedium für eine erfolgreiche Transfektion angegeben. Gleichzeitig bedeutet weniger Transfektionsreagenz auch weniger potentieller Stressfaktor für die Zellen, somit möglicherweise ein besserer Knock down. Bei gleich bleibender Menge an eingesetzter siRNA wurde die Reduktion der Transfektionsdauer auf 6 h mit weniger Transfektionsreagenz untersucht (Versuch 3 und 4, Tabelle 6). Als Transfektionsmedium ohne Zusätze von Wachstumsfaktoren wurden Accell siRNA Delivery Media (Versuch 3) und Opti-MEM (Versuch 4) getestet. 48 h nach Transfektionsbeginn ergaben sich zu den Voruntersuchungen keine Veränderungen im Hinblick auf die Vitalität. Auf RNA Ebene zeigten sich trotz dieser Vorüberlegungen unter Verwendung von Accell siRNA Delivery Media als Transfektionsmedium zwischen den drei Gruppen keine signifikanten Unterschiede (siRNA zu Kontrolle p = 0,83 und unbehandelte Zellen zu Kontrolle p = 0,85, jeweils t-Test). Gleiches galt auch für Versuch 4 (siRNA zur Kontrolle p = 0,37 und unbehandelte Zellen zur Kontrolle p = 0,16, t-Test).

Aufgrund dieser unzureichenden Ergebnisse wurden die Transfektionsbedingungen nochmals zu Gunsten des Einsatzes von PEI als Transfektionsreagenz geändert. Tabelle 7 gibt einen Überblick über die Versuchsanordnungen. In Abbildung 6 sind die Expressionsergebnisse grafisch dargestellt.

Es erfolgte zunächst die Transfektion mit 10 µl PEI für 6 h und 120 nM siRNA (Versuch 5, Tabelle 7). 48 h nach Transfektionsbeginn fiel eine Reduktion der Vitalität der Zellen in der mit siRNA transfizierten Gruppe sowie in der Kontrollgruppe auf, jedoch nicht signifikant (Kontrolle vs. Unbehandelte Zellen, p = 0,051, t-Test). Hier gelang erstmalig ein signifikanter Abfall der RenBP-Expression im Vergleich zur Kontrolle (p = 0,0011, t-Test) in der siRNA transfizierten Gruppe (Abbildung 6 A). Zwischen Kontrolle und unbehandelten Zellen \((R_0 \frac{\text{RenBP}}{18s} = 5,55 \times 10^{-4} \pm 2,82 \times 10^{-4}) \) gab es keinen Unterschied.
Trotz Knock down schien die Vitalität durch PEI negativ beeinflusst, weshalb dessen Menge auf 8 µl reduziert wurde (Versuch 6, Tabelle 7). Trotzdem ergab sich nach 48 h eine signifikant, verminderte Vitalität der Kontrolle zu unbehandelten Zellen (p = 0,016, t-Test). Auch die mit siRNA transfizierte Gruppe wies eine niedrigere Vitalität auf, ohne zusätzlichen Unterschied zur Kontrolle. Hinsichtlich der RenBP-Expression waren Kontrolle und unbehandelte Zellen (R₀ RenBP/18s = 5,49 x 10⁻⁴ ± 3,43 x 10⁻⁴) identisch. Auf RNA-Ebene gelang kein Nachweis einer Reduktion der RenBP Expression (Abbildung 6B, p = 0,25, t-Test).

Der zusammenfassend vitalitätsschädigende Effekt von PEI sollte durch eine Reduktion der Transfektionszeit auf 4 h reduziert werden (Versuch 7, Tabelle 7). Dies gelang nicht (p = 0,019, t-Test - Vergleich unbehandelte Zellen zur Kontrolle). Die Vitalität sank sogar weiter unter Einfluss der siRNA (p = 0,015, t-Test). Allerdings gelang mit dieser Versuchsanordnung die signifikante Reduktion der RenBP Expression durch die siRNA (p = 0,004, t-Test), welche der Abbildung 6 C zu entnehmen ist. Mit R₀ RenBP/18s = 8,65 x 10⁻⁴± 3,27 x 10⁻⁴ belief sich die RenBP Expression der unbehandelten Zellen nicht signifikant verändert zur Kontrolle.

Anhand der Vitalität ließ sich ableiten, dass 8 µl PEI weiterhin zelltoxisch sind, sodass nun die PEI Dosis auf 4 µl gesenkt wurde (Versuch 8, Tabelle 7). Da 4 h oder 6 h bei den Vorversuchen keine markanten Unterschiede in der Trypan-Blau-Färbung ergaben, lag die Transfektionszeit bei 6h. Die im Mittel höhere Vitalität der Kontrollen war zu den unbehandelten Zellen erniedrigt (p = 0,032, t-Test). Auch die siRNA beeinflusste die Vitalität zusätzlich (p = 0,0008, t-Test zur Kontrolle). Die Expression

<table>
<thead>
<tr>
<th>Versuchs-Nr:</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>siRNA (nM)</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Medium</td>
<td>10 µl PEI (1 mg/ml)</td>
<td>8 µl PEI (1 mg/ml)</td>
<td>8 µl PEI (1 mg/ml)</td>
<td>4 µl PEI (1 mg/ml)</td>
</tr>
<tr>
<td>Tf. Reagenz</td>
<td>Opti-MEM</td>
<td>Opti-MEM</td>
<td>Opti-MEM</td>
<td>Opti-MEM</td>
</tr>
<tr>
<td>T1 (h)/ T2(h)</td>
<td>6/48</td>
<td>6/48</td>
<td>4/48</td>
<td>6/48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vitalität (%)</th>
<th>n</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td></td>
<td>78,3±3,21</td>
<td>84,75±2,98</td>
<td>86,2±6,94</td>
<td>92,05±2,48</td>
</tr>
<tr>
<td>siRNA</td>
<td></td>
<td>71,6±3,05</td>
<td>76,25±6,39</td>
<td>79,8±5,03</td>
<td>71,8±8,99</td>
</tr>
<tr>
<td>Unbeh. Zellen</td>
<td></td>
<td>93±3,46</td>
<td>95,5±2,88</td>
<td>96,8±1,92</td>
<td>94,5±1,66</td>
</tr>
</tbody>
</table>

Tabelle 7 Transfektionen mit RenBP-siRNA (Dharmacon) und PEI
T1 = Dauer der Transfektion. T2 = Bestimmung der Vitalität mittels Trypanblau-Methode. Angabe der jeweiligen Vitalität/Expression als MW±SD.
von RenBP war ebenfalls zur Kontrolle signifikant vermindert \((p = 0,0311, \text{t-Test})\), im Mittel auf 22 % (Abbildung 6 C). Zwar konnte eine im Durchschnitt höhere Expression von \(R_0 \text{ RenBP}/18s = 8,5 \times 10^{-4} \pm 7,4 \times 10^{-4}\) in den unbehandelten H9c2 Zellen detektiert werden, jedoch ohne statistische Bedeutung.

\[
\text{Abbildung 6 RenBP-Knock down mit RenBP-siRNA (Dharmacon) und PEI}
\]

A) n = 3 B) n = 4 C) n = 4 D) n = 6. Angabe der jeweiligen Expression als \(R_0 \text{ Renbp}/R_0 \text{ 18s} \times 10^{-4}\). Die Daten sind als Mittelwerte ± SEM dargestellt. Das Signifikanzniveau liegt bei * \(p < 0,05\), ** \(p < 0,01\), mittels t-Test.

Aus den Transfektionsversuchen 5 bis 8 konnte zusammenfassend ein Effekt der siRNA auf die RenBP Expression 48 h nach Transfektionsstart beobachtet werden. Jedoch zeigte sich eine Verminderung der Vitalität nach Inkubation mit PEI. Zudem scheint diese durch die siRNA zusätzlich beeinträchtigt.

Experiment verwendeten Parametern wird unter 3.2.1 beschrieben, ebenso die einzelnen Protokolle in Abchnitt 3.6. und 3.7. Tabelle 8 zeigt das Ergebnis der Experimente im Hinblick auf die Transfektionseffizienz.

<table>
<thead>
<tr>
<th>n=3</th>
<th>Transfektionsdauer</th>
<th>Effizienz in %</th>
<th>Intensität</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 µl PEI</td>
<td>4 h</td>
<td>Kontrolle</td>
<td>1,4±0,42</td>
</tr>
<tr>
<td></td>
<td>6 h</td>
<td>Kontrolle</td>
<td>1±0,99</td>
</tr>
<tr>
<td>4 µl PEI</td>
<td>4 h</td>
<td>Kontrolle</td>
<td>1,83±1,12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siGlo</td>
<td>94,93±5,27</td>
</tr>
<tr>
<td></td>
<td>6 h</td>
<td>Kontrolle</td>
<td>1,2±0,56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siGlo</td>
<td>89,27±0,78</td>
</tr>
<tr>
<td>8 µl PEI</td>
<td>4 h</td>
<td>Kontrolle</td>
<td>2,13±1,91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siGlo</td>
<td>91,93±5,62</td>
</tr>
<tr>
<td></td>
<td>6 h</td>
<td>Kontrolle</td>
<td>3±2,38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siGlo</td>
<td>92,57±2,32</td>
</tr>
<tr>
<td>10 µl PEI</td>
<td>4 h</td>
<td>Kontrolle</td>
<td>0,73±0,65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siGlo</td>
<td>85,98±5,98</td>
</tr>
<tr>
<td></td>
<td>6 h</td>
<td>Kontrolle</td>
<td>2±1,73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siGlo</td>
<td>85,17±4,25</td>
</tr>
</tbody>
</table>

Tabelle 8 Transfektionseffizienz von PEI mit 100 nM siGlo
Dargestellt sind die MW±SD

Es stellte sich mittels Two Way ANOVA Analyse kein Unterschied bei der Transfektionsdauer hinsichtlich Effizienz, welche etwa im Mittel bei 90 % lag, und Intensität dar. Die Konzentration von PEI wirkte sich auf beide Parameter signifikant aus (Effizienz p = 0,0371, Intensität p = 0,0002). In der posthoc Untersuchung ergab sich eine signifikante Abnahme der Intensität von 8 µl zu 10 µl PEI zu beiden Zeitpunkten (4 h: p = 0,0029, 6 h: p = 0,0022).

Aufgrund gleich guter Ergebnisse wurde sich hiernach für 6 h Transfektionszeit entschieden, unter welcher der Einfluss der unterschiedlichen PEI Konzentrationen auf die Nekroserate sowie den ATP-Gehalt näher untersucht wurde. Die Nekroserate als LDH-Ratio ist in Abbildung 7 A grafisch dargestellt. Unter der ANOVA Analyse ergab sich hier mit p = 0,0081 ein Einfluss durch PEI auf den Parameter. Dabei erhöhten 10 µl PEI und 8 µl PEI die Nekroserate in Abhängigkeit zur Kontrolle signifikant mit jeweils p < 0,05, nicht jedoch die kleinste Konzentration von 4 µl. Im Mittel kam es zu einem dosisabhängigen Anstieg der Nekroserate zur PEI Menge.
Der entsprechende ATP-Gehalt der Zellen ist in Abbildung 7 B grafisch dargestellt. Hier ergab sich ein inverses Bild zur Nekrose mit im Mittel abfallender Lumineszenz unter Anstieg der PEI Konzentration. Auf statistischer Ebene zeigte sich dies signifikant mit \(p = 0,0003 \). Bei 10 µl PEI (\(p < 0,001 \)) und 8 µl PEI (\(p < 0,05 \)) waren die Ergebnisse zur Kontrolle signifikant niedriger. Kein Unterschied fand sich auch hier bei 4 µl PEI. 4 µl und 10 µl unterschieden sich untereinander auf dem \(p < 0,05 \) Niveau.

Abbildung 7 Auswirkung von PEI auf die Nekroserate/Cell Viability Assay
Inkubationszeit 6 h, Auswertung nach 48 h

A) LDH Ratio (%) = Extinktion des LDHs im Medium/Extinktion des Gesamt-LDH x 100, \(n = 7/7/7/5 \).
B) ATP Gehalt als Darstellung der relativen Lumineszenzwerte, \(n = 6 \). Darstellung als MW ± SD. Das Signifikanzniveau liegt bei \(* p < 0,05, ** p < 0,01, *** p < 0,001 \) mittels One-Way ANOVA, Turkey Post Test. Signifikanz über den Balken als Vergleich zu 0 µl PEI.

Diese Effekte sind Ausdruck von Zellstress. Damit konnte zudem der bereits beobachtete dosisabhängige vitalitätsschädigende Effekt von PEI objektiviert werden. Unter Berücksichtigung der Ergebnisse mittels siGlo stellten 4 µl PEI die am geringsten toxische und gleichzeitig effizienteste Dosis dar, weshalb sie im Folgenden verwendet wurde.

Mit diesen Transfektionsbedingungen (120 nM siRNA, 4 µl PEI, 6 h Transfektion) untersuchte man einerseits die Auswirkungen auf RNA-Ebene nach 72 h sowie vor allem auf Proteineebene nach 48 h und 72 h. Drei Tage nach Transfektionsstart (Abbildung 8 B) lag die Vitalität der unbehandelten Zellen mit 94,6 % ± 3,2 % ähnlich der Kontrolle mit 94,4 % ± 4,5 % (\(n = 8 \)). Es zeigte sich eine signifikante Verminderung dieser auf durchschnittlich 78,4 % ± 8,95 % (\(p = 0,0018, \) t-Test) in der mit siRNA transfizierten Gruppe. Auf Expressionsebene konnte wie zum Zeitpunkt 48 h die signifikante Verminderung der RenBP Expression (\(p = 0,015, \) t-Test) detektiert werden. Die RenBP Expression der unbehandelten Zellen blieb zur Kontrolle mit
$6,4 \times 10^{-4} \pm 3,1 \times 10^{-4}$ (n = 5) um den Erwartungswert zwar erhöht, jedoch statistisch betrachtet unverändert.

A

Anti-Renbp (1:500), Abnova

Abbildung 8 RenBP Expression nach siRNA Interferenz von Abnova

120nM siRNA, Transfektionszeit 6 h, 4 µl PEI. **A**) SDS Western Blot mit anti-RenBP (Abnova), anti-β-Aktin. Banden 1, 4, 7, 10, 13- unbehandelte Zellen, 2, 5, 8, 11, 14 – Kontrolle (nur mit PEI), 3, 6, 9, 12, 15 – siRNA, jeweils außen Proteinmarker, Pfeile entsprechen Zielbande. **B**) RenBP Expression auf RNA Ebene nach 72h, n = 5. **C**) RenBP Expression auf Proteinebene als Ratio zur Ladungskontrolle β-Aktin, n=3. Die Daten sind als MW ± SD dargestellt. Das Signifikanzniveau liegt bei * p < 0,05, ** p < 0,01, *** p < 0,001 mittels t-Test.

Dieser *Kock down* konnte auch im SDS-Western Blot nach 48 h und 72 h nachgewiesen werden (Abbildung 8 A). Es zeigten sich zunächst zwei Banden in allen Proben jeweils auf Höhe von 75 kDa und etwa 50 kDa. Dabei kam es zu einer deutlichen Reduktion der Bandenintensität bei der siRNA Gruppe, wobei dieser Effekt bei der <50 kDa Bande stärker auftrat. Unter Berücksichtigung der Größe des RenBP unter 50 kDa und damit Zuordnung dieser unteren Bande als das RenBP zeigte sich nach Normierung zur Ladungskontrolle β-Aktin folgendes Ergebnis. Bei zwei
Versuchen lag dieser Quotient und damit Expression zum Zeitpunkt 48 h in der Kontrolle bei 0,84 ± 0,33 sowie bei unbehandelten Zellen 0,84 ± 0,65. Beide Gruppen unterschieden sich statistisch nicht. Auch hier zeigte sich die siRNA Gruppe mit 0,19 ± 0,02 deutlich vermindert, jedoch ohne Signifikanz aufgrund der geringen Versuchsanzahl. Nach 72 h (Abbildung 8 C) konnte bei drei Versuchen eine deutliche Reduktion der Expression auf Proteinebene im Vergleich zur Kontrolle und den unbehandelten Zellen um 80 % in der siRNA Gruppe gefunden werden (p=0,003, t-Test). Kontrolle und unbehandelte Zellen wiesen keinen Unterschied auf.

Obwohl im denaturierenden Western Blot keine Dimerisierung zu erwarten ist, wurde auch eine deutlich größere Bande mit einem Molekulargewicht von circa 75 kDa nachgewiesen, die nach siRNA Interferenz in ihrer Intensität deutlich reduziert war (Abbildung 8 A). Daher wurde auch die Intensität dieser Bande quantifiziert. Hier zeigte sich nach einer Inkubationsdauer von 48 h eine Reduktion um 55 % in den RenBP-siRNA behandelten Extrakten. Die Bandenintensität sank von 0,86 ± 0,20 bei unbehandelten Zellen und 0,86 ± 0,46 bei den Kontrollen auf 0,37 ± 0,06 bei den siRNA transfizierten Zellen. Eine 72 stündige Inkubationsphase resultierte in einer signifikanten Reduktion um 70 %, wobei die Bandenintensität bei den transfizierten Extrakten 0,30 ± 0,19 (p = 0,01, t-Test) und bei den beiden Kontrollen 1,00 ± 0,19 und 1,09 ± 0,04 bei unbehandelten Zellen betrug. Anhand dieser Daten kann geschlussfolgert werden, dass die umfangreiche Etablierung dieses Knock down Modells bei H9c2 Zellen von Erfolg war – es konnte eine signifikante RenBP Downregulation auf mRNA- und Protein-Ebene realisiert werden. Dies bildete die Voraussetzung für die funktionellen Untersuchungen zum RenBP Knock down.

4.2 RenBP-Dimerisierungsgrad bei H9c2 Zellen

4.2.1 Kolokalisationen von Renin und RenBP unter Glucosedepletion

Energiemangel zustande kommen sollte, da nur hier der Zerfall von RenBP Homodimeren mit nachfolgender Renin-RenBP Heterodimer-Bildung zu erwarten wäre.

Zellen (Abbildung 10), die nur den pIRES-Vektor beinhalten, zeigen in der konfokalen Mikroskopie kaum Renin positive Bereiche. Renin Binding Protein wird über die gesamte Zellfläche verteilt mit stärkerer Anfärbung perinukleärer Bereiche

Durch diese Überexpression zeigen diese H9c2 Zellen eindeutig ein positives Fluoreszenzsignal für Renin (Abbildung 11, Abbildung 12). In Kombination mit dem RenBP-Nachweis können insbesondere unter Glucosemangel mehr gelbe Areale dargestellt werden, was auf die vermutete Kolokalisation beider Proteine schließen lässt.
Abbildung 9 Immunhistochemie von H9c2 Zellen
Antikörper gegen Renin und Renin Binding Protein sowie DAPI. Der Balken entspricht eine Größe von 20 µm. Bei B/D/F wurden die Zellen einer 24 h Glucosedepletion unterzogen
Abbildung 10 Immunhistochemie von pIRES-H9c2 Zellen
Antikörper gegen Renin und Renin Binding Protein sowie DAPI. Der Balken entspricht eine Größe von 20 µm. Bei B/D/F wurden die Zellen einer 24 h Glucosedepletion unterzogen.
Abbildung 11 Immunhistochemie von Exon (2-9) Renin-H9c2 Zellen – I
Abbildung 12 Immunhistochemie von Exon(2-9)Renin H9c2 Zellen - II
4.2.2 Monomer-Bildung durch NEM, Heterodimer-Formation mit Renin

Eine Kolokalisation zwischen Renin und Renin Binding Protein ist aufgrund der in der konfokalen Mikroskopie gefundenen Ergebnisse wahrscheinlich, besonders unter Glucosedepletion. Zum Nachweis einer direkten Proteininteraktion diente der Native Western Blot.

Abbildung 14 Nativer Western Blot mit NEM, DTNB, Renin
Anti-RenBP (Abnova, linke Membran) und nach Stripping und Inkubation mit anti Renin Antikörper (rechte Membran), Proteinmarker in rot (kDa) – Spur: 1-Proteinmarker, 2- H9c2, 3- H9c2 + NEM, 4- H9c2 + NEM + Renin, 5- H9c2 + DTNB. Pfeile – Nachweis einer doppelten Bande im Nachweis mit anti-Renin

Abbildung 15 Nativer Western Blot mit Renin Nachweis

Abbildung 16 Nativer Western Blot mit Renin und Apyrase.

4.2.3 Glucosedepletion beeinträchtigt die RenBP Aktivität als Epimerase

Abbildung 17 Einfluss der Glucosedepletion auf die NAGE-Aktivität.
Verwendete Zellen H9c2 Zellen, pRES transfizierte H9c2 Zellen sowie H9c2 Zellen unter Exon (2-9) Renin Überexpression. n=6. MW ± SD. 24h Glucosedepletion. Statistik mittels Two Way ANOVA, post hoc Analyse nach Sidak. # - Vergleich zur Gruppe mit Kontrollmedium. Signifikanzniveau: p<0,05 *, #; p<0,01 **, ##; p<0,001 ***, ###; p<0,0001 ****, ####
Die Two Way ANOVA Analyse zeigte, dass die Glucosedeposition keinen Einfluss auf die Enzymaktivität aufwies ($p = 0,84$), die Zelllinie schon ($p = 0,0004$). Allerdings ergab sich auch ein unterschiedlicher Effekt der Glucosedeposition auf die NAGE-Aktivität je nach Zellart ($p < 0,0001$). Trotz dieser damit inhomogenen Verteilung wurde eine post hoc Analyse für die relevanten Vergleiche durchgeführt. Der Grund dafür ist, dass die Wahrscheinlichkeit des Einflusses der Glucosedeposition, durch die genannte Inhomogenität, das Signifikanzniveau testbedingt nicht erreichen kann.

Unter Basalbedingungen zeigten Exon (2-9) Renin H9c2 Zellen im Vergleich zu den unbehandelten Zellen eine signifikant erhöhte NAGE-Aktivität ($p = 0,0075$). Wurden die Zellen einer 24stündigen Glucosedeposition ausgesetzt, erhöhte sich bei den Kontrolllinien H9c2 und pIRES die NAGE-Aktivität im Vergleich zur Basalbedingung. Bei pIRES Zellen zeigte sich eine signifikante ($p = 0,0075$), bei H9c2 Zellen keine Erhöhung. Im Gegensatz dazu, wiesen glucosedepolierte Exon (2-9) Renin Zellen eine signifikant reduzierte NAGE-Aktivität auf ($p < 0,001$). Diese Reduktion war signifikant sowohl in Bezug auf die beiden anderen Zelllinien ($p = 0,0001$ zu Kontrolle, $p < 0,0001$ zu pIRES) als auch im Vergleich zur korrespondierenden Basalbedingung ($p < 0,0001$).

4.3 Nekroserate unter RenBP Knock down bei H9c2 Zellen

Nach Etablierung des Knock downs des RenBP folgte die Untersuchung dessen Einflusses auf die Nekroserate der Zellen insbesondere unter Glucosedeposition mittels LDH Assay. Der differentielle Knock down erfolgte mit 30 nM, 60 nM und 120 nM siRNA gegen RenBP. Als Kontrollen dienten unbehandelte Zellen, mit PEI inkubierte Zellen sowie solche mit 60 nM scrambled siRNA transfizierte Zellen. Die Glucosedeposition betrug 20 h. Die Daten wurden dabei 48 h bzw. 72 h nach Transfektionsstart erhoben. Vor allem unter der Stresssituation sollte es gemäß initialer Hypothese im Vergleich zu normalen H9c2 Zellen durch den RenBP Knock down zu einem protektiven Effekt kommen.

Abbildung 18 Einfluss des RenBP Knock downs auf die Nekroserate (A+B) nach 48h und (C+D) nach 72h. A+C) PEI = H9c2 Zellen mit Transfektion von 4µl PEI, Glc = Glucose im Medium, unbeh. = unbehandelt B) si-Scrambled n = 6, 30 nM si-RenBP n = 7, 60 nM si-RenBP n = 9 und 120 nM si-RenBP n = 8. D) si-Scrambled n = 8, 30 nM si-RenBP n = 7, 60 nM si-RenBP n = 7 und 120 nM si-RenBP n = 9. Die Signifikanz der Unterschiede wurde auf dem p < 0,05 (*), p < 0,01 (**), p < 0,001 (***), p < 0,0001 (****) Niveau mittels Two Way ANOVA und post Test nach Sidak bestimmt. Dargestellt sind die MW ± SD.
Zwei Tage nach Transfektionsstart zeigten sich hinsichtlich der Nekroserate keine signifikanten Unterschiede zwischen H9c2 und PEI-behandelten H9c2 Zellen, weder unter Basalbedingungen noch nach Glucosedepletion (Two Way ANOVA Analyse). Die Ergebnisse sind Abbildung 18 A zu entnehmen. Allerdings hatte die Glucosedepletion (p < 0,0001), wie erwartet, einen Anstieg der Nekroserate in beiden Gruppen zur Folge (unbehandelte Zellen p = 0,001, PEI-transfizierte Zellen p = 0,001).

Dahingegen kam es unter Verwendung von scrambled siRNA zu einem verstärkten Zelluntergang im Vergleich zu PEI (p = 0,008, t-Test). Dieser Effekt konnte auch in glucosefreiem Medium beobachtet werden (p = 0,009, t-Test). Der graduelle RenBP Knock down hatte im Vergleich zur scrambled-Kontrolle keinen Einfluss auf die Nekroserate der Zellen, weder unter Basalbedingungen noch unter Glucosemangel (Abbildung 18 B, Two Way Anova). Der Einfluss der Glucosedepletion (p = 0,0024) stellte sich signifikant nur in der scrambled-Gruppe dar (post hoc Test: p = 0,0174).

Unter Glucosedepletion kam es zu keiner weiteren Zunahme der Nekroserate.

Zum Messzeitpunkt 72 h ergab sich ein ähnliches Ergebnis (Abbildung 18 C). Das Transfektionsreagenz hatte erneut keinen Einfluss auf die Nekroserate. Der Stressor (p = 0,0006) erhöhte erwartungsgemäß die LDH-Freisetzung in beiden Gruppen (unbehandelte Zellen p = 0,0066 und PEI p = 0,043). Ähnlich wie nach 48 h führte die Transfektion von scrambled-siRNA im Vergleich zur Transfektionskontrolle mit PEI zu einem Anstieg der Nekroserate (p = 0,02, t-Test), nicht jedoch unter der Glucosedepletion (p = 0,090, t-Test). Sowohl die siRNA (p = 0,0477) als auch der Stressfaktor (p < 0,0001) hatten Einfluss auf die Nekroserate (Abbildung 18 D).

Bezogen auf die scrambeld-siRNA hatte der Knock down unter Kontrollbedingungen keinen zusätzlichen Einfluss auf die Nekroserate. Unter Glucosemangel zeigte sich die Nekroserate bei 30 nM RenBP siRNA transfizierten Zellen signifikant niedriger zu Zellen, welche mit 60 nM siRNA (p = 0,0065) oder 120 nM siRNA (p = 0,0309) behandelt wurden. Unter Glucosedepletion kam es nicht zu einem Anstieg der Nekroserate bei Einsatz von 30 nM siRNA gegen RenBP, im Gegensatz zu den anderen Gruppen (scrambled siRNA p= 0,0079, 60nM siRenBP p = 0,0008, 120 nM siRenBP p = 0,0002).

Aus diesen Ergebnissen lässt sich ableiten, dass die Transfektion mit 60 nM scrambled siRNA einen zellschädigenden Effekt hatte. In den drei Kontrollgruppen war ein etwa gleich starker pronekrotischer Effekt durch die Glucosedepletion an beiden
5 Diskussion

5.1 Bildung von RenBP/Renin Heterodimeren unter Glucosemangel

Die RenBP-Renin Interaktion wurde zunächst mittels Fluoreszenzmikroskopie untersucht. Hiernach bestätigte sich die zytosolische Lokalisation des RenBP auch in H9c2 Zellen. Interessanterweise fand sich perinukleär eine höhere Konzentration an RenBP. Renin ließ sich nicht sicher nachweisen, was vermutlich auf die Detektionsgrenze der Methode in Folge einer geringen Expression des zytosolischen Renins zurückzuführen ist. Exon (2-9) Renin überexprimierende H9c2 Zellen waren deutlich Renin positiv. Hier konnten, vor allem nach Glucosedepletion, einige eine Kolokalisation beider Proteine indizierende Areale beobachtet werden. Generell schien RenBP deutlich stärker exprimiert zu sein als Renin, selbst bei solchen mit 500 facher Überexpression des alternativen Renin-Transkripts.

Da diese Kolokalisation keinen Beweis für eine direkte Proteininteraktion darstellt, sollte diese mit dem Nativen Western Blot bestätigt werden. Anhaltspunkte geben hier die unterschiedlichen Proteingrößen von Homo- und Heterodimerein. Unter Vermeidung von denaturierenden Einflüssen gelang dieses Vorhaben mit Zellplasma-
Extrakten von H9c2 Zellen. Die Auswertung des Blotes gestaltete sich schwieriger als erwartet. Ein Problem hierbei war die Bestimmung der Proteingröße, welche mittels Proteinmarker durch die native Form des Proteins nur orientierend möglich ist. Ob der Antikörper (Abnova) das native Protein erkennt, war nach Aussagen des Herstellers ebenfalls unklar. Letztlich ergaben sich zwei Banden im H9c2-Zelleextrakt, eine im Bereich zwischen 45 kDa und 67 kDa, die andere in der Größenrelation 67 kDa - 146 kDa. Gemäß der Literatur wird das Heterodimer mit 56 kDa bis 72 kDa angegeben. Bei dem Monomer mit einer beschriebenen Masse von 43 kDa bis 48 kDa könnte das Homodimer folglich etwa bei 90 kDa liegen. Somit stimmte das Ergebnis des Nativen Western Blots formal mit den bekannten Daten überein.

liegenden, niedrigen Expression des sekretorischen Renins in H9c2 Zellen im Vergleich zur Expression des zytosolischen Renins31, 40, insbesondere nach Glucosedepletion40, schlussfolgert sich aus dem in der Immunhistochemie nachgewiesenen Renin dennoch die zytosolische Form. Außerdem gelang unserer Arbeitsgruppe mit einem anderen anti-Renin Antikörper die Detektion des zytosolischen Renins im Westen Blot40. Das ungewöhnlich große Molekulargewicht des exogen hinzugefügten, nativen Renins von knapp 67 kDa (erwartet: 35 kDa bis 37 kDa71) lässt sich möglicherweise auf die Einschränkungen in der Bestimmung der Proteingröße beim Nativen Western Blot zurückführen. Des Weiteren könnten adhäsente Glykosylierungen, welche bei Renin72,73 vorkommen, das Molekulargewicht zusätzlich beeinflussen.

Unter Berücksichtigung dieser Ergebnisse, der Kolokalisation beider Proteine, dem Aktivitätsverlust von Renin unter Glucosemangel40 sowie der Heterodimerbildung unter ATP-Mangel ergeben sich eindeutige Hinweise auf die Interaktion vom zytosolischen Renin und RenBP in H9c2 Zellen unter Glucosemangel bei Überexpression des zytosolischen Renins. Damit stützen die Daten die erste These dieser Arbeit. Koimmunpräzipitation oder das yeast-to-hybrid System bieten Möglichkeiten, dies endgültig zu beweisen.
5.2 Protektion durch RenBP Knock down unter Glucosemangel?

Glucosedepletion resultiert bei H9c2 Zellen in einer verstärkten Expression des zytosolischen Renins. Dessen Überexpression führt unter der genannten Stresssituation zur Reduktion der Nekroserate.40 Unter der Annahme, dass die Heterodimerbildung aus zytosolischem Renin und RenBP mit Inhibition des RenBP als NAGE einen weiteren Schritt im protektiven Mechanismus darstellt, müsste ein RenBP Knock down einen ähnlichen Effekt bei H9c2 Zellen verursachen. Diese Hypothese steht dabei nicht im Widerspruch zu den Erkenntnissen der RenBP-KO-Mäuse, bei denen keine Stressbedingungen, beispielsweise die kardiale Ischämie, untersucht wurden.51

Die Verminderung der RenBP-Menge sollte über eine Transfektion mittels siRNA gegen RenBP erreicht werden. Die Etablierung dieser Methode gestaltete sich trotz der zunächst erfolgreichen Test-Transfektion von siGlo langwieriger als erwartet. Es gelang die Reduktion der RenBP-Expression auf RNA Ebene auf 22 % nach 48 h und 65 % nach 72 h. Bereits an der Höhe der RenBP-Expression, welches der eines Haushaltsgenes entspricht, und an der schnellen Gegensteuerung nach dem Knock down lässt sich eine Bedeutung des RenBP für die Zellen erahnen. Aufgrund vieler Vorversuche wurde die Expression aus zeittechnischen Gründen nur auf ein Haushaltsgen normiert. Durch die größere Bedeutung eines Knock down Nachweises auf Proteinebene im Western Blot als auf RNA-Ebene sowie durch die Verwendung einer einheitlichen cDNA-Menge in jeder Probe für die RT-PCR kann diese Entscheidung als vertretbar erachtet werden.

einem Spezifitätsnachweis gleich kommt. Eine Verminderung der oberen Bande bei 75 kDa war unerwartet. Ob es sich hierbei doch um RenBP-Fragmente oder möglicherweise um das trotz thermischer Denaturierung erhaltengebliebene Dimer handelt, erfordert weitere Untersuchungen. Dennoch entsprechen die gefundenen Ergebnisse denen der Herstellerbeschreibung. Eine Inkubation mit NEM, ähnlich dem Nativen Western Blot, brachte hier keine wegweisenden Ergebnisse. Unter Berücksichtigung dieser Aspekte wurden beide Banden quantifiziert, wobei sich eine Reduktion der Expression auf Proteinebene um 70 - 80 % nach 72 h, bzw. 78 % nach 48 h des RenBP ergab.

Die Auswirkung dieses Knock downs wurde auf die Nekroserate der Zellen untersucht, da dieser Parameter durch das zytosolische Renin beeinflusst war. Bereits während der Methodenentablierung zeigte sich ein mutmaßlich zellschädigender Effekt des RenBP Knock downs anhand der Trypanblau-Färbung. Um den subjektiven Faktor bei dieser mikroskopischen Auswertung der Zellvitalität zu umgehen, wurde dann der Cytotoxicity Detection Kit zur Quantifizierung der nekrotischen Zellschädigung eingesetzt. Der dosisabhängige RenBP Knock down hatte im Vergleich zur scrambled Kontrolle keinen zusätzlichen Effekt auf die basale Nekroserate, sodass die beobachtete erhöhte Nekroserate unter Kontrollbedingungen als nicht RenBP abhängig gewertet werden kann.

damit die These der Protektion des zytosolischen Renins durch Interaktion mit dem RenBP unter Zellstress.

Es stellt sich in Anbetracht dieser Ergebnisse und der unauffälligen RenBP-KO-Mäuse51 zunehmend die Frage, welche physiologische Funktion das RenBP besitzt. Die rasche Erholung der Genexpression nach siRNA Knock down als Ausdruck zellulärer Gegenregulation spricht für eine Notwendigkeit des Proteins im Zellmetabolismus.

Zusammenfassend liefern die hier erhobenen Ergebnisse einen deutlichen Hinweis auf eine Zellprotektion durch den RenBP-Mangel und stützen dabei die zweite Hypothese. Ein Beweis konnte jedoch nicht erbracht werden.
5.3 Inhibition des zytosolischen Renins als Enzym durch RenBP

Die Ergebnisse dieser Arbeit liefern deutliche Hinweise auf die Notwendigkeit der Interaktion zwischen dem RenBP und dem zytosolischen Renin im Rahmen des protektiven Mechanismus des zytosolischen Renins. Unklar bleibt, warum diese Interaktion stattfindet. Denkbar wäre eine Inhibition des zytosolischen Renins. Erkenntnisse zu dessen physiologischen Funktionen existieren spärlich und sind inhaltlich nicht eindeutig zu werten. Im Gegensatz zum sekretorischen Renin, was bei H9c2 Zellen pro nekrotisch im Rahmen einer Überexpression31 wirkt und dessen Expression nach Glucosedepletion sinkt40, ist das zytosolische Renin essentiell für diese Zellen, was der Knock down zeigte40. Auch das zytosolische Renin besitzt Renin-Aktivität36,31,40. Hieraus ergibt sich eine mögliche Kaskade eines intrazellulär vorhandenen Renin Angiotensin Systems, die über das RenBP blockiert werden könnte.

Mehrere Kaskaden werden beschrieben von einer gänzlich intrazellulären bis hin zur klassischen RAS-Kaskade, die in sekretorischen Vesikeln aktiviert wird und Auswirkungen auf die Zellen besitzt.32 Basierend auf den bisherigen Überlegungen müsste es mindestens einen weiteren zytoplasmatischen Interaktionspartner für das zytosolische Renin geben, der dann durch das zytosolische RenBP unterbunden wird.

Angiotensinogen, der (Pro)-Renin-Rezeptor sowie der Mannose-6-phosphat-Rezeptor sind bisher als weitere Renin-Interaktionspartner bekannt. Letzterer dient dem Transport der lysosomalen Enzyme aus dem Golgi-Apparat zu den Lysosomen.74 Des Weiteren werden intrazelluläre Signalkaskaden aktiviert.75 Dennoch befindet er sich entweder auf der Zelloberfläche oder in Vesikeln, wodurch eine direkte Interaktion mit dem zytosolischen Renin nicht zustande käme. Ähnlich stellt sich der (Pro)Renin Rezeptor dar, der sich in Endosomen, Golgi-Apparat oder extrazellulär auf der Zellmembran befindet.6,75 Somit verbleibt die intrazellulär stattfindende, zytoplasmatische Aktivierung der klassischen RAS Kaskade über Angiotensinogen.

Dem kardialen, intrazellulären Angiotensin II, welches die Konsequenz aus der Spaltung von intrazellulärem Angiotensinogen wäre, werden durch intrazelluläre AT1-rezeptorvermittelte Bindung insgesamt ähnliche Effekte des extrazellulären Angiotensin II auf das Herz zugeschrieben.76 Singh et. al zeigten bei Kardiomyoblasten auf, dass sowohl Isoproterenol als auch eine hohe Glucosekonzentration die intrazelluläre Angiotensin II Produktion stimulierte. Die Distribution von Angiotensin II

fehlt gänzlich. Die Autoren nutzen humane Proteine im murinen System, wo gegenseitige Einflüsse nicht ausschließbar sind. Dementsprechend muss die Schlussfolgerung der Autoren kritisch betrachtet werden, auch wenn eine gehirnspezifische Expression von humanem Angiotensinogen in der Maus für sich gesehen den Blutdruck offenbar nicht erhöht.87

Aktuelle Erkenntnisse legen die Existenz eines intramitochondrialen RAS, mit Nachweis entsprechender AT Rezeptoren und Angiotensin II nahe, welches Einfluss auf die NO Produktion und damit die Atmungskette nehmen kann.88 Hier überwiegen AT2-Rezeptoren, während des Zellalters dann AT1-Rezeptoren. Erhöhte Angiotensin II Konzentrationen sind mit einer mitochondrialen Dysfunktion assoziiert.89 Viele Details sind jedoch noch nicht verstanden. Auch das zytosolische Renin konnte in Mitochondrien nachgewiesen werden.31,34,35 Über dessen Einflüsse auf das intramitochondriale RAS kann aktuell nur spekuliert werden.

Trotz dieser umfangreichen Arbeiten zur Evaluation der Effekte eines intrazellulären Angiotensin II ergeben sich aufgrund der jeweiligen Einschränkungen der Arbeiten keine eindeutigen Beweise für ein physiologisches zytosolisch oder mitochondrial, lokalisiertes Angiotensinogen. Unter Überexpression bilden H9c2 verstärkt Apoptose aus und weisen einen veränderten Zuckerstoffwechsel auf.40 Diese Effekte wurden zudem nicht als angiotensinvermittelt deklariert.40 Mit der Ausnahme des RenBP sind damit keine hinreichend potentiellen Interaktionspartner für das zytosolische Renin bekannt, die im Rahmen der RenBP-Bindung nach Glucosedepletion beeinflusst werden könnten. Dementsprechend müssen solche z.B. über das yeast-to-hybrid System gesucht werden. Erst dann kann die These der Inhibition des Renins durch das RenBP verifiziert werden und muss aktuell eher ablehnend betrachtet werden.

5.4 Formation des zellschützenden RenBP Heterodimers - Ausblick

Die Formierung des Heterodimers aus RenBP und zytosolischen Renin könnte alternativ als solches für die Protektion notwendig sein. Für die Proteininteraktion ist ein Leuzin-Zipper Motiv notwendig.47 Interessanterweise spielt dieser Proteinabschnitt als DNA-bindende Domäne zur Gen-Regulation eine wichtige Rolle, bei der die Bindung an die DNA als Dimer, entweder in Form des Homodimers oder, wie bei Jun und Fos, auch als Heterodimer notwendig ist.90,91 Neben dem Leuzin-Zipper Motiv gibt die Tatsache der in der Immunhistochemie nukleär gefundenen RenBP- sowie RenBP-

5.5 Inhibition des RenBP durch das zytosolische Renins als Enzym
- Ausblick

Aufgrund mangelnder, bekannter, potentieller Interaktionspartner des zytosolischen Renins mit anderen Proteinen außer dem RenBP ist die Inhibition des RenBP in seiner Funktion als ein weiterer potentieller Reaktionsschritt im zytoprotektiven Mechanismus des zytosolischen Renins denkbar, insbesondere durch den hier gefundenen protektiven RenBP Knock down.

überexprimierenden Zellen aufwiesen. Mit Forskolin als unspezifischen Stimulator müssen deshalb die Ergebnisse auch kritisch betrachtet werden.

Bei älteren spontan hypertensiven Ratten konnte das Vorhandensein von einem 56 kDa HMW-Renin, also RenBP-Renin Heterodimer, im Blut beobachtet werden. In den Nieren dieser Tiere gelang der Nachweis dessen ebenso wie in den Kontrollratten, allerdings nur bei einer Präparation von Gewebsextrakten mit Thiolblockern. Das RenBP als Bestandteil im zellulären Reninmetabolismus in Tubuluszellen wurde ebenso diskutiert. Andererseits steigt bei Ratten mit künstlicher Nierenarterienstenose zwar der Blutdruck durch eine Aktivierung des RAS, jedoch nicht die Expression des Renin Binding Proteins. Ein Nachweis von RenBP unter physiologischen Bedingungen im Blut gelang nicht, was bei einem rein zytosolischen Protein nicht verwunderlich ist.

Bei erneuter Berücksichtigung der Ergebnisse zu den RenBP Knock out Mäusen geben diese Aspekte kein hinreichendes Indiz für die Beteiligung des zytosolischen RenBPs an der RAS Kaskade.

Nahliegender ist die Inhibition der enzymatischen Aktivität des RenBP durch das zytosolische Renin und, ebenso wie beim RenBP Knock down, damit Veränderung in dessen involvierten Zellmetabolismus. Das RenBP ist in die Hexosamin-Biosynthese integriert, wobei es in eben jenen komplexen Zucker-Stoffwechselprozess bisher wenig Beachtung fand. Im Folgenden soll dieser Prozess kurz skizziert werden (Abbildung 19).

Abbildung 19 Ausschnitt aus der Hexosamin-Biosynthese

N-Glykosylierungen erfolgen überwiegend im Endoplasmatischen Retikulum mit Modifikationen der Zuckerreste im Golgi-Apparat, sodass diese Proteine entweder Funktionen in der Zellmembran oder durch Sekretion extrazelluläre Aufgaben besitzen.106 UDP-N-Acetyl-Glucosamin bildet dabei den Grundstein für variantenreiche Polysaccharide. Abschließend werden an die einzelnen Zuckerketten Galaktose sowie N-Acetyl-Neuraminsäure endständig angefügt.105 O-Glykosylierungen werden im Golgi-Apparat mittels N-Acetyl-Galaktosamin initiert.107 Durch die Zuckermoleküle entstehen stark hydrophile Proteine, sodass diese sich in der Funktion als Bestandteil der extrazellulären Matrix oder als Muzine wiederfinden.107 Proteine der Zelloberfläche sowie sekretorische können ebenfalls O-glykosyliert werden.107

Diese Glykosylierungsprozesse sind sehr komplex. Einerseits sind \textit{Knock out} Mäuse, welche zu N-Glykosylierungen nicht in der Lage sind, nicht lebensfähig, andererseits Zellkulturen mit der Deletion komplexer Glykane schon.108 Mutationen oder entsprechende Knock out-Experimente von einzelnen Syntheseenzymen führen zu unterschiedlichen Phänotypen mit teilweise nur einzelnen betroffenen Organen. Einige Beispiele zeigen Lowe et. al109 in ihrem Review auf. Die Art der Glykosylierung ändert sich auch im Verlauf der Entwicklung. T-Lymphozyten verändern beispielsweise ihre Glykosylierung im Rahmen ihrer Differenzierung von naiven T-Lymphozyten zu aktivierten Zellen.110 Hierbei spielt die Sialisierung des CD8 Moleküls eine wichtige Rolle in Hinblick auf die Entwicklung von CD8-T-Lymphozyten.110

Sialysierung, vor allem durch N-Acetyl-Neuraminsäure, findet endständig an Glykanen von Glykoproteinen, bzw. Glykolipiden statt.102 Die Funktionen sind sehr variabel, meistens auf deren negative Ladung und Hydrophilie zurückzuführen, welche zur Maskierung entsprechender Strukturen führen.111 Eines der ersten beobachteten Effekte war die Protektion vor Degradation von Plasma-Proteinen, Thrombozyten, Erythrozyten oder sogar Tumorzellen.111 Neben endständigen einfachen Sialisierungen existieren auch Polysialisierungen (PSA) mit acht bis 100 N-Acetyl-Neuraminsäure Monomeren.110 Das \textit{neural cell adhesion molecule} (NCAM), dessen Funktion vor allem in der Neurogenese gesehen wird111, wird durch Polysialisierungen inhibiert.110 Gattenlöhrer et. al112 wiesen eine verstärkte Expression auch in Kardiomyozyten im und um das Narbengewebe in Gewebeproben von Patienten mit
ischämischer Kardiomyopathie nach. Nagao et. al113 gelang der Nachweis in H9c2 Zellen und ordneten NCAM einem protektiven Effekt zu.

Ein dritter Aspekt sind O-Glykosylierungen im Zellplasma, bzw. Zellkern sowie Mitochondrien.114,115 Die N-Acetyl-Glucosamin-Transferase (OGT) überträgt hierbei ein einzelnes Monosaccharid, UDP-N-Acetyl-Glucosamin, welches reversibel durch N-Acetyl-Glucosaminidase (GlcNacase) abgespalten werden kann.114 Da an dem gleichen Serin/Threonin auch eine Phosphorylierung stattfinden kann, ergibt sich hier ein Wechselspiel zwischen beiden Prozessen.114 Phosphorylierung und O-Glykosylierung können auch in einem Regulationsprozess zusammenspielen, was Kazemit et. al116 mit OGT-\textit{Knock out} Zellen postulierten.

Diese Form der O-Glykosylierung scheint essentiell, da ein OGT-Knock out \textit{in vivo} zum Zelltod führt.117 Sie korreliert positiv mit der extrazellulären Glucose-Konzentration115 und vermindert die mitochondriale Funktion in embryonalen Kardiomyoblasten115. Fülöp et. al118 zeigten eine verstärkte reversible O-Glykosylierung nach 5 - 10 min Ischämiezeit an isolierten Rattenherzen auf. Stimulation der O-Glykosylierung durch Glucosamin119,120, O-(2-Azetamido-2-desoxy-D-glucopyranosylidene)amino-N-Phenylcarbamat (PUGNac)119, einem nicht selektiven GlcNacase-Inhibitor, oder Glucose121 wird als kardioprotaktiv in diesem Setting der \textit{in vitro} Ischämie-Reperfusion angesehen. O-Glykosylierung scheint dabei ein flexibler Prozess zu sein, der in wenigen Stunden122, sogar Minuten123 erfolgt. Eine langanhaltende verstärkte O-Glykosylierung spielt dagegen in der Pathologie der Insulinresistenz bei Diabetes mellitus eine wichtige Rolle.100,114 Einerseits entwickelten Mäuse mit OGT-Überexpression in der Leber eine diabetogene Stoffwechselslüssigkeit,124 andererseits postulierten Marsh et. al125 einen ebenfalls protektiven Effekt bei Hypertrophie durch langanhaltende verstärkte O-Glykosylierung.

N-Glykosylierungen, Sialisierungen und vor allem die relativ schnelle, zytoplasmatische O-Glykosylierung als Reaktion auf Zellstress bieten dabei Anknüpfpunkte für weitere Untersuchungen zur Rolle des RenBP in der Hexosaminbiosynthese, mit besonderem Hinblick auf Veränderungen in diesen Prozessen unter RenBP Mangel und Glucosedepletion. Der Phänotyp der RenBP KO Mäuse wurde als unauffällig beschrieben, wobei hier durch die angenommene Beteiligung des RenBP am Renin-Angiotensin-System lediglich kardiovaskuläre Faktoren untersucht wurden. Die vermehrte renale Ausscheidung von
Oligosacchariden51 bei diesen Tieren gibt einen Hinweis auf die Veränderung des Hexosamin-Stoffwechsel durch das Fehlen des Renin Binding Proteins.

Neben den Renin-RenBP Heterodimeren mit eigenständigen Funktionen muss in weiterführenden Untersuchungen der Einfluss des RenBP auf Prozesse wie Glykosylierungen und Sialisierungen evaluiert werden.
6 Zusammenfassung

Das Ziel dieser Arbeit lag in der Untersuchung der Rolle des Renin Binding Proteins (RenBP) bei der kardioprotektiven Wirkung des zytosolischen Renins in H9c2 Zellen, die einer Glucosedepletion ausgesetzt waren.

7 Literaturverzeichnis

8 Publikationen

Wanka, H., Staar, D., Lutze, P., Peters, B., Hildebrandt, J., Beck, T., Bäumgen, I.,
Peters, J. Anti-necrotic and cardioprotective effects of a cytosolic renin isoform under

Schwarz H., Beck T., Schmidt EW. Schimmelpilzsensibilisierung bei
9 Danksagung

Ich danke Herrn Prof. Dr. med. Rainer Rettig für die Möglichkeit am Institut für Physiologie der Ernst-Moritz-Arndt-Universität zu promovieren.

Mein besonderer Dank gilt meinem Doktorvater Prof. Dr. med. Jörg Peters für die Überlassung des Themas und, dass er mir bei allen Fragen und Problemen zur Seite stand.

Des Weiteren möchte ich mich bei Dr. rer. nat. Heike Wanka für die ausgezeichnete Betreuung bedanken.

Ein großer Dank geht auch an Dr. rer. nat. Phillipp Lutze für die Unterstützung bei diesem Projekt durch die Durchführung der Immunhistochemie.

Außerdem gebührt mein großer Dank der Arbeitsgruppe um Prof. Dr. med. Jörg Peters, sowohl den wissenschaftlichen Mitarbeitern/-innen als auch den technischen Mitarbeiterinnen.