Volltext-Downloads (blau) und Frontdoor-Views (grau)

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-37842

Potential and Feasibility of Mytilus spp. Farming Along a Salinity Gradient

  • Mussel farming, compared to marine finfish aquaculture, represents an environmentally friendly alternative for a high quality protein source and can at the same time be a measure to remove excess nutrients in eutrophic areas. As such, it is considered as a promising “blue growth” potential and promoted within the European Union. To expand mussel aquaculture, new regions have to be considered because there are multiple marine usages, and spatial limitations occur in coastal areas. The brackish Baltic Sea might be considered for expansion of mussel aquaculture. This study focusses on estimated production potential, economic profitability and nutrient remediation potential of mussel farming at different salinities. Four experimental mussel farms were set up along the German Baltic coast at salinities ranging from 7 to 17 psu. Collected growth data was used to calibrate and validate a Dynamic Energy Budget model and to predict the potential mussel production at 12 sites along the German coast. The estimated production and nutrient removal was used to assess economic profitability, assuming two usages of the harvest: human consumption and mussel meal production. Measured mussel specific growth rates increased with salinity from 0.05 mm d–1 in Greifswald Bay to 0.11 mm d–1 in Kiel Fjord. Within 6 months, a 1-ha farm could produce from 1 t (Darss-Zingst-Bodden-Chain) to 51 t (Flensburg) fresh mussels and remove 1.1 to 27.7 kg P and 24.7 to 612.7 kg N, respectively. Mussel farms at sites west of Rostock at salinities >10 psu could produce 5 cm mussels within 18 months, but only farms at Flensburg, Eckernförde and Kiel Fjord became profitable at a farm size of 4 ha (160,000 m3) at current market prices of 2.2 € kg–1. Regardless of the farm size, none of the farm sites could operate profitable if fresh mussels were sold for animal feeding at sales price of 0.06 € kg–1. Yearly nutrient removal costs at a small-scale farm (1 ha) ranged between 162 € (Flensburg) and 4,018 € (Darss-Zingst-Bodden-Chain) kg–1 nitrogen, and 3,580 € and 88,750 € kg–1 phosphorus, respectively.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author: Anna-Lucia Buer, Marie Maar, Mark Nepf, Lukas Ritzenhofen, Sven Dahlke, René Friedland, Peter Krost, Florian Peine, Gerald Schernewski
URN:urn:nbn:de:gbv:9-opus-37842
DOI:https://doi.org/10.3389/fmars.2020.00371
ISSN:2296-7745
Parent Title (English):Frontiers in Marine Science
Publisher:Frontiers Media S.A.
Document Type:Article
Language:English
Date of first Publication:2020/06/03
Release Date:2020/10/17
Tag:Baltic Sea, DEB-model, growth rates, mussel cultivation, profitability
GND Keyword:-
Volume:7
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Abteilung für Mikrobiologie und Molekularbiologie
Licence (German):License LogoCreative Commons - Namensnennung