Volltext-Downloads (blau) und Frontdoor-Views (grau)

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-78817

Relative importance of plastic and genetic responses to weather conditions in long-lived bats

  • In the light of the accelerating pace of environmental change, it is imperative to understand how populations and species can adapt to altered environmental conditions. This is a crucial step in predicting current and future population persistence and limits thereof. Genetic adaption and phenotypic plasticity are two main mechanisms that can mediate the process of adaptation and are of particular importance for non-dispersing species. While phenotypic plasticity may enable individuals to cope with short term environmental changes, genetic adaptation will often be required for populations to survive in situ over longer time spans. However, a rapid genetic response is expected particularly in species with fast life histories or large population sizes, leaving species with slow life histories potentially at higher extinction risk. The Bechstein’s bat (Myotis bechsteinii) is a mammal of 10 g weight that - despite its small size - is characterized by a slow life history, with low reproductive output and long lifespan, and is already considered to be of high conservation concern. Past work demonstrated body size to be a highly fitness-relevant trait in Bechstein’s bats. Body size is further known to be a pivotal trait shaping the pace of life histories in numerous species. Simultaneously, many studies reported noteworthy changes in body size as a response to shifting environments across different taxa. This suggested a potential for high plasticity in this trait in Bechstein’s bats as well; however, changes in body size could have vital impacts on demographic rates. Therefore, this dissertation investigated the following questions: firstly, what shapes the fundamental development of body size in M. bechsteinii, and, specifically, is there an impact of weather conditions on body size? If so, in what form and magnitude? Secondly, how does body size subsequently influence the pace of life in females? What is the cost of a faster or slower pace of life, and how does fitness compare across individuals with slow and fast life histories? And finally, to what extent can changes in body size be attributed to either phenotypic plasticity or genetic adaptation? What is the evolutionary potential of body size in the populations? And, consequently, what implications can we draw regarding population persistence of these colonies? To answer these questions, we analyzed a long-term dataset of over two decades collected from four wild Bechstein’s bat colonies. We used individual-based data on survival, reproduction and body size, built multi-generational pedigrees, and combined everything with meteorological data. In Manuscript 1 we found that, in contrast to the declining body size observed in many species, body size in Bechstein’s bats increased significantly over the last decades. We demonstrated that ambient temperature was linked to the development of body size and identified a sensitive time period in the prenatal growth phase, in which body size was most susceptible to the impact of temperature. We established that warmer summers resulted in larger bats, but that these large bats had higher mortality risks throughout their lives. Manuscript 2 then revealed the influence of body size on the pace of life in Bechstein’s bats and demonstrated high plasticity in intraspecific life history strategies. Large females were characterized by a faster pace of life and shorter lifespans, but surprisingly, lifetime reproductive success remained remarkably stable across individuals with different body sizes. The acceleration of their pace of life means that larger females compensated for their reduced longevity by an earlier reproduction and higher fecundity to reach similar overall fitness. Ultimately, differences in body size resulted in changes in population growth rate via the impact of size on generation times. Results of Manuscript 3 were then able to clarify the extent to which changes in body size were founded on either phenotypic plasticity or genetic adaptation. We demonstrated a particularly low heritability in hot summers, indicating that variance in body size was mostly driven by phenotypic plasticity, with few genetic constraints. During cold summers, behavioural adaptations by reproducing bats seem to be able to mitigate negative effects of cold temperatures. These behaviours, such as social aggregation or preference for warm roosts, are, however, essentially irrelevant in hot environments. In addition, a low evolvability of forearm length points to a low capacity to respond to selection pressures associated with the trait. We can conclude that body size in M. bechsteinii has increased over the last two decades as a response to global warming and is only slightly constrained by its genetic underpinnings. We can further demonstrate a direct link between body size and the pace of life histories in the Bechstein’s bat populations and how changes in body size impact demographic rates via this linkage. In the context of climate change and hotter summers, our findings consequently suggest that body size will likely increase further if warm summers continue to become more frequent. Whether this plastic response of body size proves to be adaptive in the long term, however, remains to be seen. While, up to this point, switching to a faster life history has been successful in compensating fitness losses, this strategy requires sufficient habitat quality and is likely risky in times when extreme weather events are becoming more frequent, as predicted by most climate change scenarios.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar


Author: Carolin MundingerORCiD
Title Additional (English):Relative Bedeutung von plastischen und genetischen Reaktionen auf Wetterbedingungen bei langlebigen Fledermäusen
Referee:Prof. Dr. Gerald Kerth, PD. Dr. Mirjam Knörnschild, Prof. David Hodgson
Advisor:Prof. Dr. Gerald Kerth
Document Type:Doctoral Thesis
Year of Completion:2022
Date of first Publication:2023/02/17
Granting Institution:Universität Greifswald, Mathematisch-Naturwissenschaftliche Fakultät
Date of final exam:2023/01/19
Release Date:2023/02/17
Tag:Myotis bechsteinii; climate change
GND Keyword:Biologie, Klimawandel, Chiroptera, Plastizität, Anpassung
Page Number:105
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Zoologisches Institut und Museum
DDC class:500 Naturwissenschaften und Mathematik / 570 Biowissenschaften; Biologie