Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 148
Back to Result List

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-76625

Typha for paludiculture—Suitable water table and nutrient conditions for potential biomass utilization explored in mesocosm gradient experiments

  • Abstract Drainage has turned 650,000 km2 of peatlands worldwide into greenhouse gas sources. To counteract climate change, large‐scale rewetting is necessary while agricultural use of rewetted areas, termed paludiculture, is still possible. However, more information is required on the performance of suitable species, such as cattail, in the range of environmental conditions after rewetting. We investigated productivity and biomass quality (morphological traits and tissue chemical composition) of Typha angustifolia and Typha latifolia along gradients of water table depth (−45 to +40 cm) and nutrient addition (3.6–400 kg N ha−1 a−1) in a six‐month mesocosm experiment with an emphasis on their high‐value utilization, e.g., as building material, paper, or biodegradable packaging. Over a wide range of investigated conditions, T. latifolia was more productive than T. angustifolia. Productivity was remarkably tolerant of low nutrient addition, suggesting that long‐term productive paludiculture is possible. Low water tables were beneficial for T. latifolia productivity and high water tables for T. angustifolia biomass quality. Rewetting will likely create a mosaic of different water table depths. Our findings that the yield of T. angustifolia and tissue chemical composition of T. latifolia were largely unaffected by water table depth are therefore promising. Depending on intended utilization, optimal cultivation conditions and preferable species differ. Considering yield or diameter, e.g., for building materials, T. latifolia is generally preferable over T. angustifolia. A low N, P, K content, high Si content and high C/N‐ratio can be beneficial for processing into disposable tableware, charcoal, or building material. For these utilizations, T. angustifolia is preferable at high water tables, and both species should be cultivated at a low nutrient supply. When cellulose and lignin contents are relevant, e.g., for paper and biodegradable packaging, T. angustifolia is preferable at high water tables and both species should be cultivated at nutrient additions of about 20 kg N ha−1 a−1.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author: Kerstin Haldan, Nora Köhn, Anja Hornig, Sabine Wichmann, Jürgen Kreyling
URN:urn:nbn:de:gbv:9-opus-76625
DOI:https://doi.org/10.1002/ece3.9191
ISSN:2045-7758
Parent Title (English):Ecology and Evolution
Publisher:Wiley
Place of publication:Hoboken, NJ
Document Type:Article
Language:English
Date of first Publication:2022/08/23
Release Date:2022/11/29
Tag:gradient experiment; paludiculture; productivity; tissue chemical composition; utilization
Volume:12
Issue:8
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Botanik und Landschaftsökologie & Botanischer Garten
Collections:Artikel aus DFG-gefördertem Publikationsfonds
Licence (German):License LogoCreative Commons - Namensnennung