Volltext-Downloads (blau) und Frontdoor-Views (grau)
  • search hit 7 of 30
Back to Result List

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-65333

Low-Dose Oxidant Toxicity and Oxidative Stress in Human Papillary Thyroid Carcinoma Cells K1

  • Medical gas plasmas are of emerging interest in pre-clinical oncological research. Similar to an array of first-line chemotherapeutics and physics-based therapies already approved for clinical application, plasmas target the tumor redox state by generating a variety of highly reactive species eligible for local tumor treatments. Considering internal tumors with limited accessibility, medical gas plasmas help to enrich liquids with stable, low-dose oxidants ideal for intratumoral injection and lavage. Pre-clinical investigation of such liquids in numerous tumor entities and models in vitro and in vivo provided evidence of their clinical relevance, broadening the range of patients that could benefit from medical gas plasma therapy in the future. Likewise, the application of such liquids might be promising for recurrent BRAF(V600E) papillary thyroid carcinomas, resistant to adjuvant administration of radioiodine. From a redox biology point of view, studying redox-based approaches in thyroid carcinomas is particularly interesting, as they evolve in a highly oxidative environment requiring the capability to cope with large amounts of ROS/RNS. Knowledge on their behavior under different redox conditions is scarce. The present study aimed to clarify resistance, proliferative activity, and the oxidative stress response of human papillary thyroid cancer cells K1 after exposure to plasma-oxidized DMEM (oxDMEM). Cellular responses were also evaluated when treated with different dosages of hydrogen peroxide and the RNS donor sodium nitroprusside (SNP). Our findings outline plasma-oxidized liquids as a promising approach targeting BRAF(V600E) papillary thyroid carcinomas and extend current knowledge on the susceptibility of cells to undergo ROS/RNS-induced cell death.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author: Hannah Hamada Mendonça Lens, Natália Medeiros Dias Lopes, Gabriella Pasqual-Melo, Poliana Camila Marinello, Lea Miebach, Rubens Cecchini, Sander Bekeschus, Alessandra Lourenço Cecchini
URN:urn:nbn:de:gbv:9-opus-65333
DOI:https://doi.org/10.3390/app12168311
ISSN:2076-3417
Parent Title (English):Applied Sciences
Publisher:MDPI
Place of publication:Basel
Editor: Dawei Liu
Document Type:Article
Language:English
Date of first Publication:2022/08/19
Release Date:2022/11/21
Tag:BRAF; ROS; gas plasma technology; plasma medicine
GND Keyword:-
Volume:12
Issue:16
Page Number:10
Faculties:Universitätsmedizin / Klinik und Poliklinik für Chirurgie Abt. für Viszeral-, Thorax- und Gefäßchirurgie
Licence (German):License LogoCreative Commons - Namensnennung