• search hit 1 of 1
Back to Result List

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-002625-9

Optimal Thickness of Shells with an Application to Cylindrical Bodies

  • This thesis deals with thickness optimization of shells. The overall task is to find an optimal thickness distribution in order to minimize the deformation of a loaded shell with prescribed volume. In addition, lower and upper bounds for the thickness are given. The shell is made of elastic, isotropic, homogeneous material. The deformation is modeled using equations from Linear Elasticity. Here, a basic shell model based on the Reissner-Mindlin assumption is used. Both the stationary and the dynamic case are considered. The continuity and the Gâteaux-differentiability of the control-to-state operator is investigated. These results are applied to the reduced objective with help of adjoint theory. In addition, techniques from shape optimization are compared to the optimal control approach. In the following, the theoretical results are applied to cylindrical shells and an efficient numerical implementation is presented. Finally, numerical results are shown and analyzed for different examples.
  • Diese Arbeit beschäftigt sich mit der Dickenoptimierung von Schalen. Die Aufgabe ist es, eine optimale Verteilung der Dicke einer Schale unter Last zu finden, so dass die resultierende Verformung minimal wird. Das Volumen der Schale sowie untere und obere Schranken für die Dicke sind vorgegeben. Die Schale besteht aus elastischem, isotropem und homogenem Material. Die Verformung wird mit Hilfe von Gleichungen aus der Linearen Elastizitätstheorie modelliert. Hierbei wird das basic shell model unter Verwendung der Reissner-Mindlin-Annahme genutzt. Sowohl der quasistationäre als auch der zeitabhängige Fall werden betrachtet. Der Steuerungs-Zustands-Operator wird in Hinblick auf Stetigkeit und Gâteaux-Differenzierbarkeit untersucht. Die Resultate werden auf das zustandsreduzierte Zielfunktional mit Hilfe der Adjungiertengleichungen übertragen. Zusätzlich wird der gewählte Optimalsteuerungsansatz mit Ansätzen aus der Shape-Optimierung verglichen. Im Folgenden werden die theoretischen Resultate auf Zylinderschalen angewendet und eine effiziente numerische Implementierung wird vorgestellt. Abschließend werden verschiedene numerische Beispiele präsentiert und analysiert.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author: Paul Ziemann
URN:urn:nbn:de:gbv:9-002625-9
Title Additional (German):Optimale Schalendicke mit einer Anwendung auf Zylinderschalen
Advisor:Prof. Dr. Bernd Kugelmann
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2016/09/13
Granting Institution:Ernst-Moritz-Arndt-Universität, Mathematisch-Naturwissenschaftliche Fakultät (bis 31.05.2018)
Date of final exam:2016/09/08
Release Date:2016/09/13
Tag:Linear Elasticity, Optimal Control, PDE, Shells
GND Keyword:Differentialgleichung, Elastizitätstheorie, Optimale Kontrolle, Schale, Zylinderschale
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik und Informatik
DDC class:500 Naturwissenschaften und Mathematik / 510 Mathematik
MSC-Classification:49-XX CALCULUS OF VARIATIONS AND OPTIMAL CONTROL; OPTIMIZATION [See also 34H05, 34K35, 65Kxx, 90Cxx, 93-XX] / 49Jxx Existence theories / 49J20 Optimal control problems involving partial differential equations
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Bxx Elastic materials / 74B05 Classical linear elasticity
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Kxx Thin bodies, structures / 74K25 Shells