Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 16 of 85
Back to Result List

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-000854-8

Influence of single amino acid polymorphisms on the in vitro convertibility of goat prion protein

  • Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders which include, among others, scrapie and bovine spongiform encephalopathy (BSE). The causative agent is composed mainly of a misfolded isoform of a cellular prion protein (PrPC), denoted prion protein scrapie (PrPSc). Genetically determined PrPC polymorphisms can modulate the convertibility of PrPC to PrPSc and thus lead to prolonged TSE incubation times or even complete resistance of the animal. In sheep, such polymorphisms are located at codons 136, 154 and 171. Several disease-associated amino acid polymorphisms also exist in caprine PrPC. However, due to their large number and the limited number of goats carrying them, it is difficult to assess their specific impact on TSE susceptibility in vivo. The susceptibility can be simulated in vitro by a cell-free conversion assay, in which the conversion efficiency of recombinant PrPC is determined. In this study, twelve caprine PrPC variants (M112T, M137I, L141F, I142M, H143R, N146S, N146D, R151H, R211Q, Q215R, Q222K and wild-type PrPC (denoted INRQ) were produced by using PCR mutagenesis amplification and expressed in E. coli M15 cells and purified on Ni-NTA agarose columns. The renatured PrPC variants had molecular masses of approx. 23 kDa and the expected conformation as determined by CD spectroscopy. These variants were then subjected to a cell-free conversion assay using different BSE and scrapie strains. Cross species (mouse and goat) cell-free conversion studies were performed and specific monoclonal antibodies were used to discriminate the exogenous PrPSc molecules used to seed the reaction and newly converted PrPres. The studies with the mouse-adapted strain Me7 revealed that polymorphisms M137I, H143R and L141F did not influence the conversion of PrPC in a significant manner. However, the reduced conversion rate of the variant I142M (harbouring a methionine at position 142 instead of isoleucine) correlated with longer scrapie incubation times in goats with this polymorphism. The polymorphisms M112T, R151H and Q211R showed also reduced conversion rates in comparison to INRQ, an effect that related well to reduced scrapie susceptibility of such goats in vivo. Polymorphisms N146S, N146D and Q222K were to date extremely rarely found in scrapie affected goats. It was intriguing to see that these amino acid substitutions also abolished the in vitro conversion efficiency completely as did the Q215R polymorphism, which had not yet been associated with scrapie resistance in vivo. Results of cell free conversion studies with mouse adapted BSE prions (BSE/Bl6 strain) correlated well with the results obtained with Me7, although the results with BSE/Bl6 showed more variation. Again it was possible to observe a reduction in the conversion with I142M, R151H and R211Q and no or almost no conversion with N146S, N146D and Q222K and with Q215R respectively. In subsequent experiments, caprine PrPC variants were directly biotinylated so that goat or sheep scrapie as well as cattle, sheep or goat BSE derived PrPSc could be used. In these assays I142M, H143R and R211Q clearly reduced the conversion of PrPC with ovine and caprine scrapie isolates, whereas R151H did not influence the conversion efficiency of biotin-tagged PrPC. Conversion with scrapie isolates showed a marked reduction or no conversion in the case of N146S and N146D which correlated again with the Me7 data and the in vivo observations. In the case of bovine BSE isolates, the cell-free conversion mimicked the species barrier observed in vivo. BSE material from cattle barely converted any caprine PrPC variant into PrPres, whereas BSE from sheep converted all variants including the resistance-associated N146S and N146D, suggesting that the resistance is also prion strain specific. A marked reduction in the conversion rate was also observed with I142M and, less pronounced, with H143R and R211Q corroborating the protective role of these polymorphisms against TSEs. When co-incubated, resistance-associated variants N146D, N146S and Q222K produced a dominant negative effect on the conversion of the susceptible wild-type PrPC genotype (INRQ). In a similar way, the incubation of I142M and H143R also reduced the amount of PrPres in a mixture with INRQ. In conclusion, the cell-free conversion assay results show that the caprine PrP polymorphisms M112T, I142M, R143H, N146S, N146D, R151H, R215Q and Q222K correlated clearly with the in vivo susceptibilities of the goats carrying these polymorphisms. Apart from practical implications, like the possibility of breeding TSE resistant goats, these data indicate that scrapie resistance is modulated by thermodynamic changes affecting PrPC-PrPSc interactions and the formation of conversion intermediates.
  • Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders which include, among others, scrapie and bovine spongiform encephalopathy (BSE). The causative agent is composed mainly of a misfolded isoform of a cellular prion protein (PrPC), denoted prion protein scrapie (PrPSc). Genetically determined PrPC polymorphisms can modulate the convertibility of PrPC to PrPSc and thus lead to prolonged TSE incubation times or even complete resistance of the animal. In sheep, such polymorphisms are located at codons 136, 154 and 171. Several disease-associated amino acid polymorphisms also exist in caprine PrPC. However, due to their large number and the limited number of goats carrying them, it is difficult to assess their specific impact on TSE susceptibility in vivo. The susceptibility can be simulated in vitro by a cell-free conversion assay, in which the conversion efficiency of recombinant PrPC is determined. In this study, twelve caprine PrPC variants (M112T, M137I, L141F, I142M, H143R, N146S, N146D, R151H, R211Q, Q215R, Q222K and wild-type PrPC (denoted INRQ) were produced by using PCR mutagenesis amplification and expressed in E. coli M15 cells and purified on Ni-NTA agarose columns. The renatured PrPC variants had molecular masses of approx. 23 kDa and the expected conformation as determined by CD spectroscopy. These variants were then subjected to a cell-free conversion assay using different BSE and scrapie strains. Cross species (mouse and goat) cell-free conversion studies were performed and specific monoclonal antibodies were used to discriminate the exogenous PrPSc molecules used to seed the reaction and newly converted PrPres. The studies with the mouse-adapted strain Me7 revealed that polymorphisms M137I, H143R and L141F did not influence the conversion of PrPC in a significant manner. However, the reduced conversion rate of the variant I142M (harbouring a methionine at position 142 instead of isoleucine) correlated with longer scrapie incubation times in goats with this polymorphism. The polymorphisms M112T, R151H and Q211R showed also reduced conversion rates in comparison to INRQ, an effect that related well to reduced scrapie susceptibility of such goats in vivo. Polymorphisms N146S, N146D and Q222K were to date extremely rarely found in scrapie affected goats. It was intriguing to see that these amino acid substitutions also abolished the in vitro conversion efficiency completely as did the Q215R polymorphism, which had not yet been associated with scrapie resistance in vivo. Results of cell free conversion studies with mouse adapted BSE prions (BSE/Bl6 strain) correlated well with the results obtained with Me7, although the results with BSE/Bl6 showed more variation. Again it was possible to observe a reduction in the conversion with I142M, R151H and R211Q and no or almost no conversion with N146S, N146D and Q222K and with Q215R respectively. In subsequent experiments, caprine PrPC variants were directly biotinylated so that goat or sheep scrapie as well as cattle, sheep or goat BSE derived PrPSc could be used. In these assays I142M, H143R and R211Q clearly reduced the conversion of PrPC with ovine and caprine scrapie isolates, whereas R151H did not influence the conversion efficiency of biotin-tagged PrPC. Conversion with scrapie isolates showed a marked reduction or no conversion in the case of N146S and N146D which correlated again with the Me7 data and the in vivo observations. In the case of bovine BSE isolates, the cell-free conversion mimicked the species barrier observed in vivo. BSE material from cattle barely converted any caprine PrPC variant into PrPres, whereas BSE from sheep converted all variants including the resistance-associated N146S and N146D, suggesting that the resistance is also prion strain specific. A marked reduction in the conversion rate was also observed with I142M and, less pronounced, with H143R and R211Q corroborating the protective role of these polymorphisms against TSEs. When co-incubated, resistance-associated variants N146D, N146S and Q222K produced a dominant negative effect on the conversion of the susceptible wild-type PrPC genotype (INRQ). In a similar way, the incubation of I142M and H143R also reduced the amount of PrPres in a mixture with INRQ. In conclusion, the cell-free conversion assay results show that the caprine PrP polymorphisms M112T, I142M, R143H, N146S, N146D, R151H, R215Q and Q222K correlated clearly with the in vivo susceptibilities of the goats carrying these polymorphisms. Apart from practical implications, like the possibility of breeding TSE resistant goats, these data indicate that scrapie resistance is modulated by thermodynamic changes affecting PrPC-PrPSc interactions and the formation of conversion intermediates.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author: Elizabeth Ortega-Soto
URN:urn:nbn:de:gbv:9-000854-8
Title Additional (English):Influence of single amino acid polymorphisms on the in vitro convertibility of goat prion protein
Title Additional (German):Einfluß einzelen Aminosäure-Polymorphismen auf die in-vitro-Konvertierbarkeit des Prion-Protein der Ziege
Advisor:Prof. Dr. Martin Groschup, Dr. Martin Eiden, Prof. Dr. Dr. h.c. Thomas C. Mettenleiter
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2010/10/13
Granting Institution:Ernst-Moritz-Arndt-Universität, Mathematisch-Naturwissenschaftliche Fakultät (bis 31.05.2018)
Date of final exam:2010/09/23
Release Date:2010/10/13
Tag:cell free conversion; goat polymorphisms
GND Keyword:Prionprotein
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mikrobiologie - Abteilung für Genetik & Biochemie
DDC class:500 Naturwissenschaften und Mathematik / 570 Biowissenschaften; Biologie