Volltext-Downloads (blau) und Frontdoor-Views (grau)
  • search hit 1 of 1
Back to Result List

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-002367-2

On aspects of chemical processes in surface modification plasma processes

  • The current work is focused on the study of two surface modification plasma processes, (i) the active screen plasma nitriding (ASPN) and nitrocarburizing (ASPNC) for the hardening of ferrous surfaces and (ii) the microwave plasma assisted chemical vapor deposition (MW-PACVD) for the synthesis of single crystal and doped diamond. Conventional and active screen plasma nitriding processes have been investigated in a cylindrical, industrial scale ASPN reactor with a volume of about 1 m3, using low-pressure pulsed dc H2-N2 plasmas with admixtures of CH4 or CO2. The experiments were carried out (i) with the plasma at an internal model probe, (ii) with the plasma at the active screen (floated model probe) and (iii) with the plasma at the active screen and an additional plasma at the biased model probe. For deeper insights in ASPN and ASPNC processes, a laboratory scale plasma nitriding monitoring reactor, PLANIMOR, has been constructed. The main feature of this reactor is the linear configuration of the electrode setup combined with a tubular glass vessel, overcoming the experimental disadvantages of cylindrical laboratory scale ASPN reactors. With the help of infrared laser absorption spectroscopy (IRLAS) the rotational temperature of the stable molecules in the gas phase and the concentrations of the precursor, CH4, and the reaction products (NH3, HCN, C2H2, C2H4, CO, CH3) could be determined in both reactors, depending on the plasma power, the gas mixture, the plasma at the model probe and the admixture of CH4. Furthermore, the admixture of CO2 as the carbon containing precursor has been studied in the ASPN reactor leading to an additional reaction product H2O. The concentration of the molecular species has been found being in a range of 1012 to 1016 molecules cm-3. Also optical emission spectroscopy (OES) has been applied during the studies for analyzing the emission of the plasmas in the nitriding and nitrocarburizing processes. A similar behavior of the plasma chemistry in PLANIMOR comparing to that in the ASPN reactor has been found. Beside the plasma chemical investigations, both reactors have been used for the treatment of C15 steel samples. These samples have been analyzed with the help of GDOES resulting in the elements profile of the treated surfaces. It has been found that samples treated in PLANIMOR reach comparable nitriding results as samples treated in the ASPN reactor. Another focus of interest during the investigations about plasma nitrocarburizing has been the application of a carbon containing screen electrode as carbon source. For this purpose the carbon containing precursor and the steel screen have been substituted by a meshed carbon electrode, acting as the active screen. This change of the setup leads to a decrease of the NH3 production by a factor of 2.5 and an increase of the concentrations of HCN by a factor of 30 and of C2H2 by a factor of 70. The investigations of MW-PACVD processes used for diamond layer deposition have been carried out in a jacketed stainless steel reactor (JR), dedicated to the deposition of single crystalline diamond under high pressure and plasma power conditions. Using H2-plasmas with admixtures of CH4 and B2H6, the experiments were carried out in order to analyze the dependence of the plasma chemistry on several parameters, such as plasma power, pressure and gas mixture, in a wide pressure (p = 25…270 mbar) and power range (P = 0.6…4 kW). Using IRLAS the concentrations of six molecular species (B2H6, CH4, C2H2, C2H4, C2H6, CH3) have been monitored. With the help of OES the concentration of atomic boron could be determined. The concentrations of the detected molecular and atomic species were found to be in a range of 1010 to 1017 cm-3. With the help of the line-ratio-method the rotational temperature of the stable molecules has been determined. The temperature increased with pressure and power from 340 to 425 K. Using the Doppler broadening of the absorption line of CH3 at ν = 612,413 cm-1, the gas temperature has found to be Tg = (2000 ± 200) K under lower pressure and power conditions. For the H2-CH4 gas mixture, the experimental obtained molecular densities have been compared to those of a 1D-radial thermochemical model. The calculated radial densities have been integrated axially. For the same range the chemical processes in JR have been compared with those in a bell-jar (BJ) reactor. The hydrocarbon chemistry in JR has found to be similar to that in a BJ reactor.
  • Im Rahmen dieser Arbeit wurden zwei Plasmaprozesse zur Oberflächenmodifizierung untersucht: (i) Das Aktivgitter Plasmanitrierien (ASPN) und Nitrocarburieren (ASPNC) zum Härten von eisenhaltigen Werkstücken und (ii) die mikrowellenplasmagestützte chemische Gasphasenabscheidung (MW-PACVD) zur Herstellung von einkristallinen und dotierten Diamantschichten. In einem zylinderförmigen, industrienahen ASPN-Reaktor mit einem Volumen von 1 m3 wurden konventionelle und Aktivgitter-Plasmanitrierprozesse untersucht. Hierbei wurden gepulste DC Niederdruckplasmen mit einem H2-N2-Gemisch und Zugabe von CH4 oder CO2 verwendet. Die Experimente wurden dabei (i) mit Plasma an einer Modellprobe mittig im Reaktor, (ii) mit Plasma am aktiven Gitter (Modellprobe floatend) und (iii) mit Plasma an Gitter und Modelprobe durchgeführt. Daneben wurde, um einen tieferen Einblick in ASPN- und ASPNC-Prozesse zu ermöglichen, ein Plasmanitriermonitoringreaktor, PLANIMOR, im Labormaßstab konstruiert. Dieser Reaktor zeichnet sich durch eine lineare Elektrodenkonfiguration aus, die sich in einem Glasreaktor befindet, wodurch die Nachteile von herkömmlichen, zylinderförmigen Labor-ASPN-Anlagen umgangen werden können. Mittels Infrarotlaserabsorptionsspektroskopie (IRLAS) wurden in beiden Reaktoren die Rotationstemperatur der stabilen Moleküle in der Gasphase und die Konzentrationen des Präkursors, CH4, und der Reaktionsprodukte (NH3, HCN, C2H2, C2H4, CO, CH3) in Abhängigkeit von Plasmaleistung, Gasgemisch, Plasma an der Modellprobe und CH4-Zumischung bestimmt. Im ASPN-Reaktor wurden zudem Studien unter Zugabe von CO2 als Kohlenstoffträger durchgeführt, wodurch als zusätzliches Reaktionsprodukt auch H2O detektiert werden konnte. Die ermittelten Molekülkonzentrationen der Präkursoren und Reaktionsprodukte lagen in einem Bereich von 1012 bis 1016 Molekülen cm-3. In allen Untersuchungen wurde Optische Emissionsspektroskopie (OES) genutzt, um die Emission der Plasmaquellen in den betrachteten Nitrier- und Nitrocarburierprozessen zu analysieren. Es zeigte sich, dass die Plasmachemie in PLANIMOR vergleichbar mit der im ASPN-Reaktor ist. Neben den plasmachemischen Untersuchungen wurden C15 Stahlproben in beiden Reaktoren behandelt und mit Hilfe von GDOES die Elementenprofile der behandelten Proben analysiert. Hierbei konnte gezeigt werden, dass in PLANIMOR ähnliche Nitrierergebnisse erzielt werden können, wie in der industrienahen ASPN-Anlage. Ein weiterer Schwerpunkt der Untersuchungen zum Plasmanitrocarburieren mit einem Aktivgitter war die Verwendung einer kohlenstoffhaltigen Gitterelektrode als Kohlenstoffquelle. Hierzu wurde in PLANIMOR der kohlenstoffhaltige Präkursor und das Stahlgitter durch ein Karbongitter ersetzt, welches als aktives Gitter fungierte. Dies führte zu einem Abfall der NH3-Produktion im Prozess um den Faktor 2,5 und zu einem Anstieg der HCN- bzw. C2H2-Konzentrationen um das 30- bzw. 70-fache. Die Untersuchungen von MW-PACVD-Prozessen zur Abscheidung von Diamantschichten wurden in einem edelstahlummantelten Reaktor (JR) durchgeführt, der die Abscheidung von monokristallinen Diamantschichten bei hohem Druck und hohen Plasmaleistungen ermöglicht. Unter Verwendung von H2-Plasmen mit Zumischungen von CH4 und B2H6 wurde der Einfluss verschiedener Plasmaparameter, wie Plasmaleistung, Druck und Gasmischung auf die Plasmachemie in einem großen Druck- (p = 25…270 mbar) und Leistungsbereich (P = 0,6…4 kW) untersucht. Mit Hilfe von in situ IRLAS konnten die Konzentrationen von sechs molekularen Spezies (B2H6, CH4, C2H2, C2H4, C2H6, CH3) bestimmt werden. OES ermöglichte die Konzentrationsbestimmung der atomaren Bordichte. Die Konzentration der detektierten molekularen und atomaren Spezies lag zwischen 1010 und 1017 cm-3. Mit Hilfe der Line-Ratio-Methode wurde die Rotationstemperatur der stabilen Moleküle ermittelt, welche mit zunehmender Leistung und zunehmendem Druck von 340 auf 425 K zunahm. Die Doppler-Verbreiterung der CH3-Absorptionslinie bei ν = 612,413 cm-1 konnte bei niedrigeren Druck- und Plasmaleistungsbedingungen genutzt werden, um die Gastemperatur im Plasma mit Tg = (2000 ± 200) K zu bestimmen. Bei den Untersuchungen im H2-CH4-Gasgemisch wurden die experimentell bestimmten molekularen Dichten mit denen eines eindimensionalen, radialen, thermochemischen Modells, nach Integration in axialer Richtung, verglichen. Zusätzlich erfolgte ein Vergleich mit der Plasmachemie in einem Bell-Jar (BJ) Reaktor, die ähnlich zu der im JR war.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author: Stephan Hamann
URN:urn:nbn:de:gbv:9-002367-2
Title Additional (German):Zu Aspekten von chemischen Prozessen in Plasmaprozessen zur Oberflächenmodifikation
Advisor:Prof. Dr. Jürgen Röpcke
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2015/12/18
Granting Institution:Ernst-Moritz-Arndt-Universität, Mathematisch-Naturwissenschaftliche Fakultät (bis 31.05.2018)
Date of final exam:2015/11/25
Release Date:2015/12/18
GND Keyword:Niederdruckplasma, Plasmanitrieren, Diamant, Gasphasenabscheidung, Laserspektroskopie, Absorptionsspektroskopie
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
DDC class:500 Naturwissenschaften und Mathematik / 530 Physik