Volltext-Downloads (blau) und Frontdoor-Views (grau)
  • search hit 1 of 2
Back to Result List

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-000728-8

Untersuchung der Katodenregion von quecksilberfreien He-Xe Niederdruckgasentladungslampen mit planarer Geflechtelektrode

  • In der vorliegenden Arbeit wurde die Katodenregion einer quecksilberfreien Helium-Xenon Niederdruckentladung im Brennfleckbetrieb experimentell untersucht. Diese Region ist von besonderem Interesse, da sich hier die Elektronenemission, die Erzeugung von Ionen und metastabilen Atomen sowie lebensdauerbegrenzende Prozesse abspielen. Um die Entladung im Brennfleckbetrieb zu realisieren, kam als Katode eine im Rahmen dieser Arbeit entwickelte neuartige planare Geflechtelektrode zum Einsatz. Mit der Methode der ortsaufgelösten Laser-Atom-Absorptionsspektroskopie (LAAS) wurden die absoluten Teilchendichten der zwei untersten angeregten Xe-Atome und die Gastemperatur in der Katodenregion bestimmt. Die Inhomogenität des Spot-Plasmas fand dabei besondere Berücksichtigung. Sowohl die Teilchendichten der zwei untersten angeregten Xe-Atome als auch die Gastemperatur sind unmittelbar vor dem Brennfleck maximal und fallen in axiale und radiale Richtung stark ab. Insbesondere die Gastemperatur beträgt in einem Abstand von 1 mm vor dem Brennfleck circa 650 K und liegt damit deutlich über Raumtemperatur. Des Weiteren ließ sich die Temperatur im Brennfleck auf der Katodenoberfläche mittels optischer Emissionsspektroskopie ermitteln. Dies geschah durch Anpassung des aufgenommenen Spektrums an die Plancksche Strahlungsgleichung. Die Brennflecktemperaturverteilung weißt ein ausgeprägtes Maximum auf, das je nach Entladungsstromstärke maximale Werte zwischen 1414 K bei 40 mA und 1524 K bei 80 mA annimmt. Von diesem Maximum aus wurde ein starker in alle Richtungen nahezu symmetrischer Temperaturabfall festgestellt. Ein technologisch wichtiger Aspekt hinsichtlich der Lebensdauer einer auf Xenon basierenden quecksilberfreien Lampe ist der negative Effekt der Xe-Gasaufzehrung. In dieser Arbeit wird gezeigt, dass die Gasaufzehrung unter Verwendung der planaren Geflechtelektrode im deutlichen Gegensatz zur industriell gefertigten Becherelektrode, wie sie vielfach in Lampen für Lichtwerbung vorkommt, vernachlässigbar klein ist. Dies wird auf die Ausbildung eines heißen Brennflecks und die damit verbundene hohe Katodentemperatur und niedrige Katodenfallspannung zurückgeführt.
  • In the present work the cathode region of a mercury-free helium-xenon low pressure discharge in spot mode was experimentally investigated. Due to the emission of electrons, the production of ions and metastable atoms as well as lifetime limiting processes the cathode region is of particular interest. To implement a discharge in spot mode a novel planar mesh electrode was developed and used as cathode. Applying the space resolved laser-atom-absorption-spectroscopy method (LAAS) the absolute particle densities of the two lowest excited xenon atoms and the gas temperature in the cathode region were determined, whereas the strong spot plasma inhomogeneity was considered. Both the excited xenon particle density and the gas temperature strongly decrease in radial and axial direction. Particularly the gas temperature has a value of about 650 K in a 1mm cathode distance and does clearly exceed room temperature. Furthermore the spectrum of the hot spot on the cathode surface was detected by means of optical emission spectroscopy. From this spectrum the temperature distribution of the cathode spot was obtained by fitting Planck’s law. The temperature distribution shows a distinct maximum, which in dependence of the discharge current reaches values of 1414 K at 40 mA and 1524 K at 80 mA. From that maximum a steep direction-independent temperature decrease was obtained. A technological important aspect concerning the lifetime of a xenon based mercury-free discharge lamp is the problematic effect of the xenon gas consumption. In this work it is shown that in contrary to an industrial made standard cup electrode, which is broadly used in light advertising lamps, the gas consumption is negligible when applying the novel planar mesh electrode. This reduction of gas consumption is due to the generation of a hot spot along with high cathode temperature and low cathode fall voltage.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author: Jörn Winter
URN:urn:nbn:de:gbv:9-000728-8
Title Additional (English):Cathode region investigation of mercury-free He-Xe low pressure discharge lamps with planar mesh electrode
Advisor:Prof. Dr. Klaus-Dieter Weltmann
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2010/01/19
Granting Institution:Ernst-Moritz-Arndt-Universität, Mathematisch-Naturwissenschaftliche Fakultät (bis 31.05.2018)
Date of final exam:2009/12/04
Release Date:2010/01/19
Tag:Emission; Gasaufzehrung; Gastemperatur; Quecksilber
cathode; gas consumption; spot; temperatur; xenon
GND Keyword:Niederdruckentladung, Xenon, Kathode, Brennfleck, Spot
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
DDC class:500 Naturwissenschaften und Mathematik / 530 Physik
PACS-Classification:50.00.00 PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES / 52.00.00 Physics of plasmas and electric discharges (for space plasma physics, see 94.05.-a; for astrophysical plasmas, see 95.30.Qd; for physics of the ionosphere and magnetosphere, see 94.20.-y and 94.30.-d respectively) / 52.25.-b Plasma properties (for chemical reactions in plasma, see 82.33.Xj) / 52.25.Os Emission, absorption, and scattering of electromagnetic radiation
50.00.00 PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES / 52.00.00 Physics of plasmas and electric discharges (for space plasma physics, see 94.05.-a; for astrophysical plasmas, see 95.30.Qd; for physics of the ionosphere and magnetosphere, see 94.20.-y and 94.30.-d respectively) / 52.50.-b Plasma production and heating (see also 52.80.-s Electric discharges) / 52.50.Nr Plasma heating by DC fields; ohmic heating, arcs
50.00.00 PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES / 52.00.00 Physics of plasmas and electric discharges (for space plasma physics, see 94.05.-a; for astrophysical plasmas, see 95.30.Qd; for physics of the ionosphere and magnetosphere, see 94.20.-y and 94.30.-d respectively) / 52.70.-m Plasma diagnostic techniques and instrumentation / 52.70.Kz Optical (ultraviolet, visible, infrared) measurements
50.00.00 PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES / 52.00.00 Physics of plasmas and electric discharges (for space plasma physics, see 94.05.-a; for astrophysical plasmas, see 95.30.Qd; for physics of the ionosphere and magnetosphere, see 94.20.-y and 94.30.-d respectively) / 52.80.-s Electric discharges (see also 51.50.+v Electrical properties of gases; for plasma reactions including flowing afterglow and electric discharges, see 82.33.Xj in physical chemistry and chemical physics)