Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 22 of 85
Back to Result List

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-45644

Plasma-Treated Water Affects Listeria monocytogenes Vitality and Biofilm Structure

  • Background: Plasma-generated compounds (PGCs) such as plasma-processed air (PPA) or plasma-treated water (PTW) offer an increasingly important alternative for the control of microorganisms in hard-to-reach areas found in several industrial applications including the food industry. To this end, we studied the antimicrobial capacity of PTW on the vitality and biofilm formation of Listeria monocytogenes, a common foodborne pathogen. Results: Using a microwave plasma (MidiPLexc), 10 ml of deionized water was treated for 100, 300, and 900 s (pre-treatment time), after which the bacterial biofilm was exposed to the PTW for 1, 3, and 5 min (post-treatment time) for each pre-treatment time, separately. Colony-forming units (CFU) were significantly reduced by 4.7 log10 ± 0.29 log10, as well as the metabolic activity decreased by 47.9 ± 9.47% and the cell vitality by 69.5 ± 2.1%, compared to the control biofilms. LIVE/DEAD staining and fluorescence microscopy showed a positive correlation between treatment and incubation times, as well as reduction in vitality. Atomic force microscopy (AFM) indicated changes in the structure quality of the bacterial biofilm. Conclusion: These results indicate a promising antimicrobial impact of plasma-treated water on Listeria monocytogenes, which may lead to more targeted applications of plasma decontamination in the food industry in the future.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author: Oliver Handorf, Viktoria Isabella Pauker, Thomas Weihe, Jan Schäfer, Eric Freund, Uta Schnabel, Sander Bekeschus, Katharina Riedel, Jörg Ehlbeck
URN:urn:nbn:de:gbv:9-opus-45644
DOI:https://doi.org/10.3389/fmicb.2021.652481
ISSN:1664-302X
Parent Title (English):Frontiers in Microbiology
Publisher:Frontiers Media S.A.
Document Type:Article
Language:English
Date of first Publication:2021/04/28
Release Date:2021/06/27
Tag:MidiPLexc; PTW; antimicrobial; cold plasma; food production industry; sustainability; viability
GND Keyword:-
Volume:12
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mikrobiologie - Abteilung für Genetik & Biochemie
Licence (German):License LogoCreative Commons - Namensnennung