• search hit 2 of 2
Back to Result List

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-000537-0

Degradation of branched chain aliphatic and aromatic petroleum hydrocarbons by microorganisms

  • The overall aim of the work was to investigate the ability of several Gram-positive bacteria including Mycocbacterium neoaurum SBUG 109, Nocardia cyriacigeorgica SBUG 1472 and Rhodococcus ruber SBUG 82 and the yeast Trichosporon mucoides SBUG-Y 801 to degrade and transform branched chain hydrocarbons which occur in petroleum and its fraction products such as gasoline or gas oil and which are known as important and recalcitrant environmental pollutants. Pristane, iso-pentylbenzene and sec-octylbenzene were used in this work as model compounds. These compounds represent significant groups of petroleum constituents (branched chain alkanes and aromatic hydrocarbons). Three bacteria and the yeast T. mucoides SBUG-Y 801 were selected in a screen of 16 hydrocarbon-utilizing strains in the SBUG collection and from 21 isolated hydrocarbon-utilizing strains from oil-contaminated habitats of Saudi Arabian Desert and of Vietnam. The bacteria were identified in cooperation with DSZM (Deutsche Sammlung von Mikroorganismen und Zellkulturen) as M. neoaurum SBUG 109, N. cyriacigeorgica SBUG 1472, R. ruber SBUG 82. These bacterial and yeast strains were shown to possess high potential for degrading and transforming pristane, iso-pentylbenzene and sec-octylbenzene. The intermediates produced by these bacteria during incubation with pristane were analyzed by GC and GC/MS. The products 4-methyl pentanoic acid; methyl butanedioic acid; 2-methyl pentadioic acid; methyl propanedioic acid; 4-methyl heptanedioic acid and 2,6,10,14–tetramethyl-pentadecan–3–one were detected in M. neoaurum cultures. In R. ruber, methyl butanedioic acid; 2-methyl pentadioic acid; 4,8-dimethylnonanoic acid, 4-methyl heptanedioic acid; 2,6,10–trimethylundecanoic acid; 3,7-dimethyl decanedioic acid and 2,6,10,14–tetramethyl–pentadecan–3-one were identified. In N. cyriacigeorgica, 2-methylpentanedioic acid; 4,8-dimethylnonanedioic acid; 2,6-dimethylheptanedioic acid and pristanic acid were found. The detection of 11 intermediates during pristane degradation by the three Gram-positive bacteria provided sufficient information to elucidate in detail three degradative pathways of pristane involving mono-, di- and sub-terminal oxidations. The sub-terminal oxidation by M. neoaurum and R. ruber was demonstrated for the first time. This occurence of a sub-terminal oxidation in these strains was strengthened by further results of aromatic compounds transformation (see below). During this pathway, ketone mono-oxygenation reactions seem to be involved. Because of this it will be of interest to look more closely at the catalytic processes involved and their possible extension to the bio-degradation of other branched chain hydrocarbons. Since in the present study 59 %, 51 % and 84 % of pristane were degraded in 3 weeks by M. neoaurum, R. ruber and N. cyriacigeorgica, this illustrated that the degradation rates of this isoprenoid alkane were high. The bacteria we studied were not only effective degraders of multiple branched chain alkane but also useful transformers of aromatic hydrocarbons. The intermediates produced were analyzed by comparing the retention times and UV/Vis spectra of the HPLC elution profile as well as the retention times and mass spectra of the GC/MS with those of available standards. Using iso-pentylbenzene as a substrate, 8 metabolites were generated by M. neoaurum transformation including product A (phenylacetic acid), B (acetophenone), D (iso-valerophenone), E (succinic acid), F (benzoic acid), G [(2-hydroxy-phenyl)-acetic acid] and H (2-methyl-4-phenyl-butyric acid). We additionally identified an alkyl hydroxylated iso-pentylbenzene derivative as 2-methyl-4-phenyl-butan-2-ol or 2-methyl-4-phenyl-butan-1-ol. Two metabolites (C and D) were detected by N. cyriacigeorgica transformation and three metabolites (A, D and F) were identified by R. ruber transformation which led to the complete biotransformation of this substance. iso-Pentylbenzene transformation by M. neoaurum was initiated by attack on the alkyl side chain followed by ring cleavage. The appearance of iso-valeorophenone confirmed the occurrence of a sub-terminal oxidation mechanism in M. neoaurum and R. ruber. In addition to products A, C, D and G, the identification X-(3–methyl–butyl)-phenol (X means that position of the hydroxy group on the aromatic ring system, such as 2, 3 or 4 remained unclear) in T. mucoides cultivation demonstrated for the first time the capacity of alkyl side chain attack by this organism which was hitherto known only for its ability of ring cleavage. The detection of 15 degradation products of sec-octylbenzene (including 2-phenylpropionic acid, 3-phenylbutyric acid, ß-methylcinnamic acid, 5-phenylhexanoic acid, acetophenone, 2-hydroxy-acetophenone, 2,3-dihydroxy-benzoic acid, succinic acid, 7-phenyloctan-2-one, benzoic acid, phenylacetic acid, 7-phenyl-octan-2-ol, hydroxy-phenylacetic acid and 2-hydroxybenzoic acid), in the studied bacteria pointed to an effective sec-octylbenzene degradation pathway in which dehydrogenation of 3-phenylbutyric acid to form ß-methylcinnamic acid is a newly described option. The identification of 2-phenylpropionic acid and 3-phenylbutyric acid in sec-octylbenzene transformation experiments by T. mucoides confirmed the possibility of alkyl side chain attack by this yeast. Summarizing the results, we describe for the first time in detail the biotransformation of sec-octylbenzene by M. neoaurum, N. cyriacigeorgica, R. ruber and T. mucoides. Our results suggest that these microorganisms may be useful as potential strains for hydrocarbon degradation and it may be of interest to investigate their suitability to solve specific environmental pollutant problems associated with branched chain aliphatic and alkyl-branched compounds which contribute to the persistence of hydrocarbon fractions in the environment.
  • Der Abbau und die Eliminierung von Schadstoffen, die durch zunehmende Industrialisierung und Verkehr nach wie vor in beträchtlichem Umfang in die Umwelt gelangen, ist für di Gesunderhaltung der Menschen und den Artenschutz von Pflanzen und Tieren eine bedeutsame und vordringliche Aufgabe. Zu der von der Menge her mit Abstand wichtigster Schadstoffgruppe zählen Erdöl und dessen Raffinierungsprodukte, wie beispielsweise Dieselkraftstoff und Benzin. Diese Produkte bestehen aus mehr als 1000 Einzelverbindungen, von denen ein Großteil weitgehend ungefährlich und leicht in der Umwelt abbaubar ist. Jedoch bleiben vielfach nach Biodegradationsprozessen kleinere, schwer abbaubare Fraktionen zurück, in denen sich unter anderem verzweigtkettige Kohlenwasserstoffe, kondensierte Aromaten und Cycloalkane befinden, die sich aufgrund des seltenen Vorkommens von Mikroorganismen mit entsprechenden hohen Abbauaktivitäten anreichern und als relativ persistent erweisen. Ein besonderes Problem dabei war es, hochreine Modellsubstanzen (ohne begleitende Verunreinigungen) mit verzweigten aliphatischen Ketten als Ausgangssubstrate zur Verfügung zu haben. Mit dem Einsatz von Pristan, einem 4-fach methylverzweigten längerkettign Alkan sowie den mittels HPLC-Analysen besser zugänglichen aromatichen, einfach verzweigten Kohlenwasserstoffen sek.-Octylbenzen und iso-Pentylbenzen waren Voraussetzungen gegeben, die Abbaumechanischmen dieser Modellsubstanzen im Detail zu untersuchen. Zum einen ist hervorzuheben, dass die schließlich gefundenen und eingesetzten Mikroorganismen, vor allem Nocardia cyriacigeorgica (Isolat aus Saudi-Arabien), Mycobacterium neoaurum und Rhodococcus ruber, im Hinblich auf eine Verwertung von verzweigtkettigen Kohlenwasserstoffen bisher nicht bekannt sind. Die bisher beschriebenen Pristan verwertenden Bakterien wurden in de Regel nur bis zur Gattungsebene bestimmt; nur zwei exakt identifizierte Bakterienarten, Brevibacterium erythrogenes und Nocardia globerula, sind bisher als Pristanverwerter bekannt. Zum anderen gelang es wir durch exakten chemische Analyse 11 Pristanmetaboliten für Pristan zu erstellen, das als das bisher vollständigste Schema für eine biogen bedingte Pristanumsetzung gelten kann. Vor allem der Pathway III (eine subterminale Oxidation) wurde zum ersten Mal im Detail beschrieben. Auch für die Umsetzung von iso-Pentylbenzen und sek.-Octylbenzen konnten insgesamt 23 Metaboliten in ihrer Struktur aufgeklärt und mehrere neue Metaboliten beschrieben werden. Auch für diese Schadstoffe konnten umfassende und neue Abbau-Schemata erstellt werden. Für sek.-Octylbenzen liegt nunmehr mit 15 nachgewiesenen Intermediaten ebenfalls das bisher umfassendste Abbauschema für Mikroorganismen vor. Für Trichosporon mucoides, eine Hefe, die bisher vor allem als Aromatenverwerter bekannt war (und die nicht auf n-Alkanen wachsen kann) konnte erstmals die Fähigkeit zur Oxydation von Alkylketten (am Beispiel von weniger hydrophoben Substanzen) nachgewiesen werden. Zusammenfassend kann festgestellt werden, dass die Untersuchungen von großem Interesse für die Reinigung von persistierende Ölresten in verunreinigten Arealen sowie für die Transformation von verzweigten Alkylketten verschiedenster chemischer Substanzen durch Mikroorganismen sind.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author: Le Thi Nhi Cong
URN:urn:nbn:de:gbv:9-000537-0
Title Additional (German):Abbau von aliphatic und aromatic Erdöl Hydrocarbon durch Mikroorganismen
Advisor:Prof. Dr. U. Klinner, Prof. Dr. F. Schauer
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2008/11/19
Granting Institution:Ernst-Moritz-Arndt-Universität, Mathematisch-Naturwissenschaftliche Fakultät (bis 31.05.2018)
Date of final exam:2008/11/14
Release Date:2008/11/19
GND Keyword:Degradation, Mycobacterium neoaurum, Nocardia cyriacigeorgica, Rhodococcus ruber
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Abteilung für Mikrobiologie und Molekularbiologie
DDC class:500 Naturwissenschaften und Mathematik / 570 Biowissenschaften; Biologie