Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 9
Back to Result List

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-001353-6

Atmospheric-Pressure Dielectric Barrier Discharges: Synthesis and Deposition of Organic plasma polymers and their characterizations

  • Abstract Atmospheric Pressure Discharges have attracted much interest in recent years. The development of a new processes based on this discharge needs a clear understanding of plasma and discharge physics and chemistry. At the present time much attention is paid to the chemical processes in barrier discharge plasma in various gas mixtures, since the understanding of these processes is necessary for the development of industrial reactors. Besides these, hydrocarbons are being used for the formation of diamond like or amorphous carbon (DLC) films. Specially, hydrogenated amorphous carbon (a-C: H) and plasma polymerization. In this work we have used Dielectric Barrier Discharge (DBD) a plasma device used to investigate simple hydrocarbon reactions in a plasma phase. Our aim of plasma phase chemical reaction studies is to form molecular hydrogen, higher order hydrocarbons CnHm up to n ≥ 12 series and nitrogen - containing organic complexes using simple hydrocarbons. Deposition of thin organic films or DLC films were carried out using the DBD. In this study we have chosen certain combination of gases such as C2Hm/N2 (m = 2, 4, 6) and C2Hm/Ar (m = 2, 4, 6); the purpose of using N2 and Ar gases are to dilute and stabilize the hydrocarbon plasma and to investigate plasma chemical reactions with nitrogen gas. All reactions were carried out under an atmospheric pressure (300 mbar) with gas ratio 1:2; Experiments were performed by applying high voltage with a frequency 5.5 kHz. The plasma phase diagnostics have been investigated using mass spectrometry and FTIR spectroscopy. Formation of molecular hydrogen, N-containing organic complexes and higher order hydrocarbons with C ≥ 12, have been investigated with mass spectrometry. FTIR spectroscopy reveals the formation of substituted alkanes (sp3), alkenes (sp2) and alkynes (sp) and nitrogen containing functional groups from the individual gases which are used in this work. Abundant formation of acetylene occurs with C2H6 and C2H4 as precursor gases. Amorphous hydrogenated carbon nitride (a-CNx:H) films have been deposited on Si (100) and glass substrates using gas mixtures C2Hm/N2 (m = 2, 4, 6). Surface chemical compositions have been derived from Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) and X-ray Photo electron Spectroscopy (XPS). FT-IRRAS and XPS show the presence of sp, sp2 and sp3 bonds of carbon and nitrogen for C2Hm/N2 thin films. Various functional groups such as amines, saturated and unsaturated alkyl groups have been identified. Thin films obtained from C2H2/N2 and C2H4/N2 gas mixture had a larger N/C ratio when compared to the film obtained from C2H6/N2. Thickness, refractive index and extinction co-efficient were investigated by ellipsometry. Rate of deposition have been investigated. Different surface morphology has been derived using Scanning Electron Microscopy. Amorphous hydrogenated carbon (a-C:H) films or diamond like carbon (DLC) films have been deposited on Si (100) and glass substrates using gas mixtures C2Hm/Ar (m = 2, 4, 6). Diagnostics for the deposited films have been done using different spectroscopic techniques. Surface chemical compositions have been derived from Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) and X-ray Photo electron Spectroscopy (XPS). FT-IRRAS show the presence of sp, sp2 and sp3 bonds of carbon and hydrogen for C2Hm/Ar (m = 2, 4, 6) thin films. The characteristic peak for C1s has been observed from XPS. Thickness, refractive index and extinction co-efficient were investigated by ellipsometry. Rate of deposition have been investigated.
  • Atmospheric-Pressure dielektrisch behinderten Entladungen: Synthese und Ablagerung von organischen Plasma-Polymere und ihre Charakterisierungen

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author: Thejaswini C Halethimmanahally
URN:urn:nbn:de:gbv:9-001353-6
Title Additional (English):Atmospheric-Pressure Dielectric Barrier Discharges: Synthesis and Deposition of Organic plasma polymers and their characterizations
Title Additional (German):Atmospheric-Pressure dielektrisch behinderten Entladungen: Synthese und Ablagerung von organischen Plasma-Polymere und ihre Charakterisierungen
Advisor:Prof. Rainer Hippler
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2012/12/01
Granting Institution:Ernst-Moritz-Arndt-Universität, Mathematisch-Naturwissenschaftliche Fakultät (bis 31.05.2018)
Date of final exam:2012/11/16
Release Date:2012/12/01
Tag:Dielektrische Entladung; Duennschichten; FTIR-Spektrometrie; Massenspektrometrie; Titan-Tholine
Dielectric Barrier Discharge; FTIR spectroscopy; Mass Specrtometry; Thin films; Titan Tholins
GND Keyword:DBD
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
DDC class:500 Naturwissenschaften und Mathematik / 530 Physik