Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 9 of 152
Back to Result List

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-22854

Surface Forces Characterization of Polyelectrolyte Monolayers and Multilayers

  • This work study a monolayer of branched poly(ethyleneimine (PEI) adsorbed onto oppositely charged surfaces with iron chelates or iron ions in the absorption solution. The conformation of adsorbed PEI is explored in the dependence of the composition of the adsorption solution by measuring the surface forces using atomic force microscopy (AFM) with the colloidal probe (CP) at different ionic strengths (INaCl) in surrounding aqueous solution. The surface coverage of these layers is investigated using X-ray reflectivity. PEI solutions show different pH values with iron chelates (pH = 3), iron ions (pH = 4.67) or pure water (pH = 9.3) at room temperature. Low surface coverage of PEI at pH = 3 adjusted by monovalent ions was also observed. However, adsorbing PEI with iron ions or iron chelates and washing with pure water shifts the pH, leading to an adsorbed PEI layer with high coverage. In our observation, the influence of iron ions and iron chelates on the surface coverage of PEI film is stronger than the pH effect. PEI adsorbed from a pure water solution shows flat conformation. Surface force measurements with CP show that PEI adsorbed from solutions containing iron chelates or iron ions cause almost identical steric forces. The thickness of the brush L is determined as a function of the ionic INaCl in the measuring solution. It scales as a polyelectrolyte brush. The maximum number density of gold nanoparticles (AuNPs) adsorbed onto the PEI brushes was identical and larger than on flatly adsorbed PEI. On the PEI layer with the larger surface coverage, the AuNPs aggregate; on the PEI layer with the lower surface coverage they do not aggregate. Taken together, these results contribute to understanding the mechanisms determining surface coverage and conformation of PEI and demonstrate the possibility of controlling surface properties, which is highly desirable for potential future applications. In this thesis, we also investigate the top layer (PSS and PDADMA) of polyelectrolyte multilayer (PEM) films. PEM films were prepared by sequential adsorption of oppositely charged PEs on solid substrates. PEM films consist of polydiallyldimethylammonium (PDADMA) as polycation and the polystyrene sulfonate (PSS) as polyanion. PDADMA has a smaller linear charge density than PSS. For this system, two different growth regimes are known: parabolic and linear. I studied the top layer (PSS and PDADMA) conformation of PEM films and how the structure of this top layer is affected by increasing the number of PDADMA/PSS layer pairs N and the addition of salt to the surrounding solution. The INaCl was changed during the force-distance measurements. PSS terminated films always show electrostatic forces at INaCl < 0.1 M and flat conformation. The surface charge density is always negative at INaCl < 0.1 M. The surface charge of the PSS top layer starts to turn from negative to positive at N ≥ 14. At N between 13 and 15, adsorbed PSS cannot compensate all the excess PDADMA charge. This leads to an accumulation of the positive extrinsic sites within the PSS terminated film beyond a specific N. At INaCl ≈ 0.1 M, an exponential decaying force was measured. This is an indication of unusual long-ranged hydration force (decay length λ-1 ≈ 0.2-0.5 nm), and PSS terminated film shows zwitterionic or neutral surface. At INaCl > 0.1 M, a non-electrostatic action occurs and the PSS terminated film reswells in solution. PDADMA terminated surface consisting of few layers show a flat conformation and the electrostatic forces were measured. For N ≥ 9 and INaCl ≤ 0.1 M, steric forces were measured. The force-distance profiles are well-explained by Alexander and de Gennes theory. PDADMA chains show a maximum L that is around 40-45 % of the contour length. For INaCl ≈ 0.1 M, and N > 9, a flat, neutral or zwitterionic surface is found (λ-1 ≈ 0.3-0.9 nm). For N = 9 and INaCl > 0.1 M, a strong screening of electrostatic interaction and attractive forces are observed. For N > 9 and INaCl > 0.1 M, the ion adsorption into the PE chains leads to an increase in the monomer size and as a result, the L increases and PDADMA brushes reswell again into the solution. These data show that by varying N and INaCl, different surface forces can be obtained: Electrostatic forces (flat chains) both positive and negative, steric forces (brush), hydration force (flat, neutral or zwitterionic surface), and effects not yet explained (reswelling brush).

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Master of Science (M.Sc.) Heba Soker Mohamad
URN:urn:nbn:de:gbv:9-opus-22854
Title Additional (German):Oberflächenkräfte Charakterisierung von Polyelektrolyt Mono- und Multischichten
Referee:Prof. Dr.rer.nat. Christiane A. Helm, Prof. Dr.rer.nat. Georg Papastavrou
Advisor:Prof. Dr.rer.nat. Christiane A. Helm
Document Type:Doctoral Thesis
Language:English
Year of Completion:2018
Date of first Publication:2018/08/30
Granting Institution:Ernst-Moritz-Arndt-Universität, Mathematisch-Naturwissenschaftliche Fakultät (bis 31.05.2018)
Date of final exam:2018/06/29
Release Date:2018/08/30
Tag:surface forces
GND Keyword:PEI,PDADMA,PSS,surface forces,atomic force microscopy, colloidal probe
Page Number:144
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
DDC class:500 Naturwissenschaften und Mathematik / 530 Physik