Volltext-Downloads (blau) und Frontdoor-Views (grau)

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-200404-7

Experimental investigations on drift waves in linear magnetized plasmas

  • Two main aspects concerning drift wave dynamics in linear, magnetized plasma devices are addressed in the work: In part I of the thesis, drift waves are studied in a helicon plasma. The plasma parameter regime is characterized by comparably high collision frequencies and comparably high plasma-p exceeding the electron-ion mass ratio. Single Langmuir probes and a poloidal probe array are used for spatiotemporal studies of drift waves as well as for characterization of background plasma parameters. The main goals are the identification of a low-frequency instability and its major destabilization mechanisms. All experimentally observed features of the instability were found to be consistent with drift waves. A new code, based on a non-local cylindrical linear model for the drift wave dispersion, was used to gain more insight into the dominating destabilzation mechanisms, and also into dependencies of mode frequencies and growth rates on different parameters. In the experiment and in the numerical model, poloidal mode structures were found to be sheared. Part II of the thesis reports about mode-selective spatiotemporal synchronization of drift wave dynamics in a low-P plasma. Active control of the fluctuations is achieved by driving a preselected drift mode to the expense of other modes and broadband turbulence. It is demonstrated that only if a resonance between the driver signal and the drift waves in both space and time is reached, the driver has a strong influence on the drift wave dynamics. The synchronization effect is qualitatively well reproduced in a numerical simulation based on a Hasegawa-Wakatani model.

Download full text files

Export metadata

Additional Services

Search Google Scholar


Author: Christiane Schröder
Advisor:Prof. Dr. Thomas Klinger
Document Type:Doctoral Thesis
Date of Publication (online):2006/07/14
Granting Institution:Ernst-Moritz-Arndt-Universität, Mathematisch-Naturwissenschaftliche Fakultät (bis 31.05.2018)
Date of final exam:2004/02/06
Release Date:2006/07/14
GND Keyword:Plasma, Instabilität
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
DDC class:500 Naturwissenschaften und Mathematik / 530 Physik