Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-001426-1

Complementary application of ESI and MALDI based mass spectrometry in microbial proteomics

  • This thesis will discuss the different fields of application of the two soft ionization techniques ESI and MALDI in microbial proteomics and their importance for a better understanding of bacteria physiology. The general development in the past 25 years coming from 2D-gel analysis and protein identification by peptide mass fingerprint analysis via MALDI-TOF to genome wide quantitative LC-ESI-MS experiments with fast and sensitive ESI instruments is exemplary shown for the Gram-positive bacterium Bacillus subtilis in article I. Even though 2D-PAGE in conjunction with MALDI-MS is still an important tool in proteomic research, the more recently established global quantitative LC-ESI-MS workflows gain more and more relevance as they overcome 2D-PAGE based protein restrictions and enable the acquisition of higher accurate protein quantities. In article II such a workflow was used to analyze the physiological adaptation of Staphylococcus aureus to vancomycin treatment on a global-scale. Also post-translational modifications of proteins, that are important for regulation of their activity and allow rapid adaption to changed environmental conditions, could be analyzed by LC-ESI-MS workflows using special enrichment strategies (article III and IV). Despite the mentioned discrimination and less accurate quantification of proteins, 2D-PAGE analyses are still advantageous when analyzing large-scale time series experiments. To gain highly time resolved data but also very accurate relative quantities on a global-scale, 2D-PAGE-MALDI-MS and LC-ESI-MS techniques have been combined to investigate dynamic proteome adaptations of B. subtilis during nutrition shift as part of a global systems biology approach (article V). Also absolute quantities of proteins are of high interest for systems biology, but are still challenging to obtain on large-scale as well as with sufficient accuracy. In article VI a method that again combined 2D-PAGE-MALDI-MS and LC-ESI-MS was introduced to gain absolute protein quantities on global-scale. Utilizing the complementarity of 2D-PAGE and LC-ESI-MS this new workflow enabled fast and cost efficient data acquisition on absolute scale. In article VII we described for the first time a global quantitative LC-MALDI-MS workflow. Cross validation with an LTQ Orbitrap proofed that LC-MALDI-MS is able to process complex samples and obtain highly reliable quantities. The comparative analysis of data gained with both instrument types revealed biases for certain biochemical properties of MALDI as well as ESI instruments, resulting in a general complementarity of both ionization techniques. Article I Becher, D., Büttner, K., Moche, M., Hessling, B., Hecker, M., 2011. From the genome sequence to the protein inventory of Bacillus subtilis. Proteomics 11, 2971–2980. Article II Hessling,B., Bonn,F., Herbst,F.-A., Rappen,G.-M., Bernhardt,J., Hecker,M. and Becher,D. Global proteome analysis of vancomycin stress in Staphylococcus aureus. Submitted to Mol. Cell Proteomics. Article III Elsholz, A.K.W., Turgay, K., Michalik, S., Hessling, B., Gronau, K., Oertel, D., Mäder, U., Bernhardt, J., Becher, D., Hecker, M., Gerth, U., 2012. Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 109, 7451–7456. Article IV Chi, B.K., Gronau, K., Mäder, U., Hessling, B., Becher, D., Antelmann, H., 2011. S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics. Mol. Cell Proteomics 10, M111.009506. Article V Buescher,J.M., Liebermeister,W., Jules,M., Uhr,M., Muntel,J., Botella,E., Hessling,B., Kleijn,R.J., Le Chat,L., Lecointe,F., et al. (2012) Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. Science, 335, 1099–1103. Article VI Maass, S., Sievers, S., Zühlke, D., Kuzinski, J., Sappa, P.K., Muntel, J., Hessling, B., Bernhardt, J., Sietmann, R., Völker, U., Hecker, M., Becher, D., 2011. Efficient, global-scale quantification of absolute protein amounts by integration of targeted mass spectrometry and two-dimensional gel-based proteomics. Anal. Chem. 83, 2677–2684. Article VII Hessling,B., Büttner,K., Hecker,M. and Becher,D. Global relative quantification with LC-MALDI – cross-validation with LTQ-Orbitrap proves reliability and reveals complementary ionization preferences. Submitted to Mol. Cell Proteomics.
  • In dieser Arbeit werden die verschiedenen Einsatzmöglichkeiten der beiden weichen Ionisierungsmethoden ESI und MALDI in der mikrobiellen Proteomanalyse und ihren wichtigen Beitrag zum besseren Verständnis der bakteriellen Physiologie.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author: Bernd Heßling
URN:urn:nbn:de:gbv:9-001426-1
Title Additional (German):Komplementärer Einsatz von ESI und MALDI basierter Massenspektrometrie in der mikrobiellen Proteomik
Advisor:Dr. Michael Hecker
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2013/03/18
Granting Institution:Ernst-Moritz-Arndt-Universität, Mathematisch-Naturwissenschaftliche Fakultät (bis 31.05.2018)
Date of final exam:2013/01/07
Release Date:2013/03/18
GND Keyword:Elektrospray-Ionisation, LC-MS, MALDI-MS, Proteomanalyse
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Abteilung für Mikrobiologie und Molekularbiologie
DDC class:500 Naturwissenschaften und Mathematik / 570 Biowissenschaften; Biologie