Volltext-Downloads (blau) und Frontdoor-Views (grau)

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-35645

Development of Formulations of Penicillin G for the Local Treatment of Helicobacter pylori

  • Infections with Helicobacter pylori are a global challenge that affects both developed and developing countries. This infection is currently treated using multiple antimicrobials that are mostly absorbed after oral administration and subsequently secreted into the gastric lumen. The eradication rates from the different therapeutic regimens, however, are declining nowadays, primarily due to high antibiotic resistance and possibly the mode of drug delivery. H. pylori is commonly found adhering to epithelial cells, and therefore, intragastric drug delivery may be a more direct treatment option. In this work, we developed a new strategy for the local eradication of H. pylori within the stomach. Initial in vitro experiments revealed that penicillin G shows promising antibiotic activity against resistant strains of H. pylori with MIC values of 0.125 µg/mL. To provide luminal concentrations above the MIC for an extended time, we decided to follow two different formulation strategies: effervescent granules and HPMC-based hydrogel matrix tablets. Among the granule formulations, only one batch was stable and demonstrated excellent performance with respect to drug content, effervescent action, and drug release. It was therefore selected for further in vitro studies. All matrix tablets showed the desired tablet quality requirements and drug release was scalable in vitro by the HPMC concentration. In order to quantify PGS in various formulations and media, an HPLC method was developed and validated. Due to the stability concerns, the degradation behavior of PGS was studied at different pH. PGS was found to be unstable at acidic pH values, but its stability was higher at more neutral pH values. Sufficient stability was exhibited at pH values above pH 4.5. Due to the instability of PGS in acidic media, alkalizers were added to the matrix tablets to prevent the degradation of the drug within the tablet. Among the alkalizers tested, NaHCO3 showed the most promising results as it significantly enhanced the stability within the matrix and also the concentration of PGS in the dissolution media. The stabilizing effect was caused mainly by the modulation of the microenvironmental pH rather than a pH change in the dissolution media. As a result, these matrix tablets were selected for further in vitro characterization. In order to guide formulation development, a flow-through model (FTM), which was able to simulate various physiological conditions of the gastric environment, was developed and applied. In contrast to compendial dissolution methods, the FTM allowed studying the effect of gastric secretion, mixing and emptying on the gastric concentration of the drug in vitro. It could be shown that the granules generated a high initial concentration, which decreased over time. On the contrary, the matrix tablets did not provide such a profile due to the absence of pressure events in the model. Further investigations of the matrix tablets in a dissolution stress test device revealed faster drug release if pressure events of physiological relevance are simulated. In the last part of this thesis, the two formulation concepts were compared in vivo by using the salivary tracer technique. For this purpose, caffeine was used as a model drug. The in vivo investigations suggested that granules administered in a fed state demonstrated longer gastric retention than in a fasted state. In a fed state, effervescent granules provided longer gastric retention of caffeine in comparison to the matrix tablets. Interestingly, the administration of the granules together with 240 mL of tap water provided an even better gastric retention of caffeine than the smaller volume (20 mL). Additional MRI investigations after 4 h of tablets’ intake revealed that the matrix tablets were already disintegrated in vivo. In conclusion, effervescent granules dosed after food are expected to better maintain intragastric drug concentration over an extended period compared to matrix tablets. Moreover, the carbon dioxide generated after disintegration supports the mixing of the drug with the chyme and thus, provides a uniform distribution of the drug. By this, bacterial sanctuary sites within the stomach can be avoided. The major challenge could be the stability of PGS in acidic media. This problem could be addressed via concomitant administration of PPIs. H2 blockers could also be recommended to address nocturnal acid-breakthrough during the mid-night. In combination with an acid-reducing agent, PGS granule formulations alone or part of the treatment regimens could enable the local eradication of H. pylori directly within the stomach.

Download full text files

Export metadata

Statistics

frontdoor_oas
Metadaten
Author:Dr. Taddese Mekonnen Ambay
URN:urn:nbn:de:gbv:9-opus-35645
Title Additional (German):Entwicklung von Penicillin G-Formulierungen zur lokalen Behandlung von Helicobacter pylori
Referee:Prof. Dr. Werner WeitschiesORCiD, Prof. Dr. Henning Blume
Advisor:Prof. Dr. Werner Weitschies
Document Type:Doctoral Thesis
Language:English
Year of Completion:2020
Date of first Publication:2020/02/28
Granting Institution:Universität Greifswald, Mathematisch-Naturwissenschaftliche Fakultät
Date of final exam:2020/02/24
Release Date:2020/02/28
Tag:Penicillin G, Formulation development, Helicobacter pylori
GND Keyword:XGND
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Pharmazie
DDC class:500 Naturwissenschaften und Mathematik / 500 Naturwissenschaften