Volltext-Downloads (blau) und Frontdoor-Views (grau)

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-38890

Graph Theoretical Problems in Life Sciences

  • A common task in natural sciences is to describe, characterize, and infer relations between discrete objects. A set of relations E on a set of objects V can naturally be expressed as a graph G = (V, E). It is therefore often convenient to formalize problems in natural sciences as graph theoretical problems. In this thesis we will examine a number of problems found in life sciences in particular, and show how to use graph theoretical concepts to formalize and solve the presented problems. The content of the thesis is a collection of papers all solving separate problems that are relevant to biology or biochemistry. The first paper examines problems found in self-assembling protein design. Designing polypeptides, composed of concatenated coiled coil units, to fold into polyhedra turns out to be intimately related to the concept of 1-face embeddings in graph topology. We show that 1-face embeddings can be canonicalized in linear time and present algorithms to enumerate pairwise non-isomorphic 1-face embeddings in orientable surfaces. The second and third paper examine problems found in evolutionary biology. In particular, they focus on inferring gene and species trees directly from sequence data without any a priori knowledge of the trees topology. The second paper characterize when gene trees can be inferred from estimates of orthology, paralogy and xenology relations when only partial information is available. Using this characterization an algorithm is presented that constructs a gene tree consistent with the estimates in polynomial time, if one exists. The shown algorithm is used to experimentally show that gene trees can be accurately inferred even in the case that only 20$\%$ of the relations are known. The third paper explores how to reconcile a gene tree with a species tree in a biologically feasible way, when the events of the gene tree are known. Biologically feasible reconciliations are characterized using only the topology of the gene and species tree. Using this characterization an algorithm is shown that constructs a biologically feasible reconciliation in polynomial time, if one exists. The fourth and fifth paper are concerned with with the analysis of automatically generated reaction networks. The fourth paper introduces an algorithm to predict thermodynamic properties of compounds in a chemistry. The algorithm is based on the well known group contribution methods and will automatically infer functional groups based on common structural motifs found in a set of sampled compounds. It is shown experimentally that the algorithm can be used to accurately predict a variety of molecular properties such as normal boiling point, Gibbs free energy, and the minimum free energy of RNA secondary structures. The fifth and final paper presents a framework to track atoms through reaction networks generated by a graph grammar. Using concepts found in semigroup theory, the paper defines the characteristic monoid of a reaction network. It goes on to show how natural subsystems of a reaction network organically emerge from the right Cayley graph of said monoid. The applicability of the framework is proven by applying it to the design of isotopic labeling experiments as well as to the analysis of the TCA cycle.
  • Eine in den Naturwissenschaften häufig zu lösende Aufgabe ist es, Beziehungen zwischen diskreten Objekten herzustellen, diese Relationen zu beschreiben und sie zu charakterisieren. Eine Menge von Beziehungen E in einer Menge von Objekten V kann natürlicherweise als ein Graph G = (V, E) beschrieben werden. Daher ist es oft möglich, Probleme in den Naturwissenschaften als graphentheoretische Probleme zu formalisieren. In dieser Arbeit werden wir eine Reihe solcher Problemen untersuchen, die insbesondere in der Biologie und Chemie auftreten. Wir werden zeigen, wie man graphentheoretische Konzepte verwenden kann, um die dargestellten Probleme zu formalisieren und zu lösen. Der Inhalt dieser Arbeit besteht aus einer Sammlung von Artikeln, die jeweils Probleme mit einem starken Bezug zur Biologie oder zur Biochemie lösen.

Download full text files

Export metadata

Statistics

frontdoor_oas
Metadaten
Author:Dr. rer. nat. Nikolai Nøjgaard
URN:urn:nbn:de:gbv:9-opus-38890
Title Additional (German):Graphentheoretische Probleme in den Biowissenschaften
Referee:Prof. Dr. Marc Hellmuth, Prof. Dr. Daniel Merkle, Prof. Dr. Martin Middendorf, Prof. Dr. Peter Dittrich
Advisor:Prof. Dr. Marc Hellmuth, Prof. Dr. Daniel Merkle
Document Type:Doctoral Thesis
Language:English
Year of Completion:2020
Date of first Publication:2020/08/17
Granting Institution:Universität Greifswald, Mathematisch-Naturwissenschaftliche Fakultät
Date of final exam:2020/07/17
Release Date:2020/08/17
Tag:Algorithmic Cheminformatics; Graph Theory; Phylogenetics; Self-assembling protein design
GND Keyword:pn: Nikolai Nøjgaard; kw: Graph Theory
Page Number:151
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik und Informatik
DDC class:500 Naturwissenschaften und Mathematik / 510 Mathematik
500 Naturwissenschaften und Mathematik / 570 Biowissenschaften; Biologie