Volltext-Downloads (blau) und Frontdoor-Views (grau)

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-40515

Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands

  • Abstract Aim Species–area relationships (SARs) are fundamental scaling laws in ecology although their shape is still disputed. At larger areas, power laws best represent SARs. Yet, it remains unclear whether SARs follow other shapes at finer spatial grains in continuous vegetation. We asked which function describes SARs best at small grains and explored how sampling methodology or the environment influence SAR shape. Location Palaearctic grasslands and other non‐forested habitats. Taxa Vascular plants, bryophytes and lichens. Methods We used the GrassPlot database, containing standardized vegetation‐plot data from vascular plants, bryophytes and lichens spanning a wide range of grassland types throughout the Palaearctic and including 2,057 nested‐plot series with at least seven grain sizes ranging from 1 cm2 to 1,024 m2. Using nonlinear regression, we assessed the appropriateness of different SAR functions (power, power quadratic, power breakpoint, logarithmic, Michaelis–Menten). Based on AICc, we tested whether the ranking of functions differed among taxonomic groups, methodological settings, biomes or vegetation types. Results The power function was the most suitable function across the studied taxonomic groups. The superiority of this function increased from lichens to bryophytes to vascular plants to all three taxonomic groups together. The sampling method was highly influential as rooted presence sampling decreased the performance of the power function. By contrast, biome and vegetation type had practically no influence on the superiority of the power law. Main conclusions We conclude that SARs of sessile organisms at smaller spatial grains are best approximated by a power function. This coincides with several other comprehensive studies of SARs at different grain sizes and for different taxa, thus supporting the general appropriateness of the power function for modelling species diversity over a wide range of grain sizes. The poor performance of the Michaelis–Menten function demonstrates that richness within plant communities generally does not approach any saturation, thus calling into question the concept of minimal area.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author: Jürgen Dengler, Thomas J. Matthews, Manuel J. Steinbauer, Sebastian Wolfrum, Steffen Boch, Alessandro Chiarucci, Timo Conradi, Iwona Dembicz, Corrado Marcenò, Itziar García‐Mijangos, Arkadiusz Nowak, David Storch, Werner Ulrich, Juan Antonio Campos, Laura Cancellieri, Marta Carboni, Giampiero Ciaschetti, Pieter De Frenne, Jiri Dolezal, Christian Dolnik, Franz Essl, Edy Fantinato, Goffredo Filibeck, John‐Arvid Grytnes, Riccardo Guarino, Behlül Güler, Monika Janišová, Ewelina Klichowska, Łukasz Kozub, Anna Kuzemko, Michael Manthey, Anne Mimet, Alireza Naqinezhad, Christian Pedersen, Robert K. Peet, Vincent Pellissier, Remigiusz Pielech, Giovanna Potenza, Leonardo Rosati, Massimo Terzi, Orsolya Valkó, Denys Vynokurov, Hannah White, Manuela Winkler, Idoia Biurrun
URN:urn:nbn:de:gbv:9-opus-40515
DOI:https://doi.org/10.1111/jbi.13697
ISSN:1365-2699
Parent Title (English):Journal of Biogeography
Publisher:Wiley
Place of publication:Hoboken, New Jersey
Document Type:Article
Language:English
Date of first Publication:2020/01/26
Release Date:2020/12/02
Tag:Michaelis–Menten function; Palaearctic grassland; logarithmic function; minimal area; nested‐plot sampling; nonlinear regression; plant biodiversity; power law; scaling law; species–area relationship (SAR)
GND Keyword:-
Volume:47
Issue:1
First Page:72
Last Page:86
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Botanik und Landschaftsökologie & Botanischer Garten
Licence (German):License LogoCreative Commons - Namensnennung