Refine
Year of publication
- 2015 (1)
Document Type
- Doctoral Thesis (1)
Language
- German (1)
Has Fulltext
- yes (1) (remove)
Is part of the Bibliography
- no (1) (remove)
Keywords
- Serinproteasen (1) (remove)
Institute
- Institut für Chemie und Biochemie (1) (remove)
Der Replikationszyklus der Herpesviren ist sehr komplex und im Detail unzureichend verstanden. Die Funktionen und Eigenschaften einiger viraler Proteine sind bisher kaum charakterisiert. Folglich gibt es wenige Strukturmodelle dieser Proteine, wodurch beispielsweise eine rationale Medikamentenentwicklung kaum möglich war. Die Zielstellung dieser Arbeit war, neun dieser Proteine (pUL4, -7, -11, -16, -21, -26, -26.5, -32 und -33) aus dem pseudorabies virus (PrV) zu charakterisieren und nach Möglichkeit deren Struktur aufzuklären. Hierzu wurden die zur Verfügung gestellten Gensequenzen in geeignete bakterielle Expressionsvektoren umkloniert und in E. coli exprimiert. Lösliche Proteine wurden gereinigt und anschließend Kristallisationsexperimenten unterzogen, während unlösliche Proteine zum Teil auf ihre Renaturierbarkeit getestet wurden. Die Strukturen des kristallisierten N-terminalen Teils von pUL26 (Assemblin) wurden mittels Röntgenkristallographie aufgeklärt. Außerdem wurden alle Proteine in silico auf Signalsequenzen, Phosphorylierungen und Sequenzmuster untersucht. Von der N-terminalen Serinproteasedomäne (Assemblin) von pUL26 wurden drei Strukturen durch Röntgenkristallographie bestimmt: eine native dimere, eine inhibierte dimere, sowie eine native monomere Struktur. Letztere ist das erste bekannte Strukturmodell der monomeren Form eines Assemblins. In Verbindung mit den dimeren Strukturen konnte experimentell bestätigt werden, dass die Aktivierung der Assembline über die Verschiebung eines loop bei der Dimerisierung erfolgt. Die Umlagerung dieses loop basiert darauf, dass sich der in der monomeren Form teilweise flexible Dimerisierungsbereich durch die Dimerisierung etwas verändert und eine weitestgehend starre Konformation einnimmt. Die Helix α8 wird etwas verkürzt und die Helix α7 etwas verlängert und begradigt, wodurch sich der Oxyanionenloch-Loop vom Dimerisierungsbereich entfernt und ein ausgedehntes Wasserstoffbrückenbindungsnetzwerk aufbaut. In dieser Konformation stabilisiert der loop das Oxyanionenloch, wodurch die Protease aktiviert wird. Weiterhin wurde durch small-angle X-ray scattering bestätigt, dass der Dimerisierungsgrad von der Assemblin- und Mg²+;-Ionenkonzentration abhängig ist. Diese Informationen zur Dimerisierung des PrV-Assemblins können dazu beitragen, rationale Medikamentenentwicklung zu betreiben. Daraus resultierende Wirkstoffe können die Dimerisierung und somit die Aktivierung dieses Schlüsselproteins verhindern. Durch die hohe Ähnlichkeit der Assembline in anderen Herpesviren, kann die nun bekannte monomere Struktur des PrV-Assemblins als Modell für die monomere Struktur anderer, zum Teil humanpathogener Herpesviren genutzt werden. Demzufolge könnte dieses Modell auch die Entwicklung von Medikamenten beispielsweise gegen das Epstein-Barr virus oder das herpes simplex virus 1 ermöglichen. Es stellte sich zudem heraus, dass die bisher für das PrV-pUL26 bzw. -pUL26.5 vorhergesagte zweite Assemblinschnittstelle (M-site) vermutlich nicht korrekt ist. Es wurde eine andere M-site vorgeschlagen, welche ebenfalls infrage kommt. Eine Charakterisierung in vitro war bei fünf der neun zu untersuchenden Proteine möglich. Die anderen vier Proteine (pUL7, -16, -21 und -32) konnten aus verschiedenen Gründen nicht erfolgreich exprimiert werden. Die Proteine pUL4, pUL26.5 und pUL33 wurden unlöslich exprimiert, wobei pUL33 renaturiert werden konnte. Der Membrananker pUL11 und die N-terminale Serinproteasedomäne von pUL26 konnten löslich exprimiert werden. Untersuchungen in silico ergaben, dass der Membrananker pUL11 aus dem pseudorabies virus wahrscheinlich ein nukleäres Exportsignal trägt, was bisher nicht bekannt war. Es ist zudem wahrscheinlich, dass pUL11 selbst keine definierte Struktur hat, da es mit 63 Aminosäuren ein sehr kleines Protein ist und über Sequenzmuster mit anderen Proteinen interagiert.