Refine
Document Type
- Article (5)
- Doctoral Thesis (1)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- - (2)
- SigB (2)
- BCA (1)
- Bacillus subtilis (1)
- Clp proteolysis (1)
- IsdB (1)
- McsB arginine kinase (1)
- MgsR activity (1)
- MgsR degradation (1)
- NLRP3 inflammasome (1)
Institute
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung (UMG) (2)
- Abteilung für Mikrobiologie und Molekularbiologie (1)
- Institut für Immunologie (1)
- Institut für Mikrobiologie (1)
- Institut für Transfusionsmedizin (1)
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung (MNF) (1)
Publisher
Under hyperosmotic conditions, bacteria accumulate compatible solutes through synthesis or import. Bacillus subtilis imports a large set of osmostress protectants via five osmotically controlled transport systems (OpuA to OpuE). Biosynthesis of the particularly effective osmoprotectant glycine betaine requires the exogenous supply of choline. While OpuB is rather specific for choline, OpuC imports a broad spectrum of compatible solutes, including choline and glycine betaine. One previously mapped antisense RNA of B. subtilis, S1290, exhibits strong and transient expression in response to a suddenly imposed salt stress. It covers the coding region of the opuB operon and is expressed from a strictly SigB-dependent promoter. By inactivation of this promoter and analysis of opuB and opuC transcript levels, we discovered a time-delayed osmotic induction of opuB that crucially depends on the S1290 antisense RNA and on the degree of the imposed osmotic stress. Time-delayed osmotic induction of opuB is apparently caused by transcriptional interference of RNA-polymerase complexes driving synthesis of the converging opuB and S1290 mRNAs. When our data are viewed in an ecophysiological framework, it appears that during the early adjustment phase of B. subtilis to acute osmotic stress, the cell prefers to initially rely on the transport activity of the promiscuous OpuC system and only subsequently fully induces opuB. Our data also reveal an integration of osmostress-specific adjustment systems with the SigB-controlled general stress response at a deeper level than previously appreciated.
The iron-regulated surface determinant protein B (IsdB) of Staphylococcus aureus is involved in the acquisition of iron from hemoglobin. Moreover, IsdB elicits an adaptive immune response in mice and humans. Here, we show that IsdB also has impact on innate immunity. IsdB induces the release of proinflammatory cytokines, including IL-6 and IL-1β, in innate immune cells of humans and mice. In silico analysis and thermophoresis show that IsdB directly binds to TLR4 with high affinity. TLR4 sensing was essential for the IsdB-mediated production of IL-6, IL-1β, and other cytokines as it was abolished by blocking of TLR4-MyD88-IRAK1/4-NF-κB signaling. The release of IL-1β additionally required activation of the NLRP3 inflammasome. In human monocytes infected with live S. aureus, IsdB was necessary for maximal IL-1β release. Our studies identify S. aureus IsdB as a novel pathogen-associated molecular pattern that triggers innate immune defense mechanisms.
Regulated ATP-dependent proteolysis is a common feature of developmental processes and plays also a crucial role during environmental perturbations such as stress and starvation. The Bacillus subtilis MgsR regulator controls a subregulon within the stress- and stationary phase σB regulon. After ethanol exposition and a short time-window of activity, MgsR is ClpXP-dependently degraded with a half-life of approximately 6 min. Surprisingly, a protein interaction analysis with MgsR revealed an association with the McsB arginine kinase and an in vivo degradation assay confirmed a strong impact of McsB on MgsR degradation. In vitro phosphorylation experiments with arginine (R) by lysine (K) substitutions in McsB and its activator McsA unraveled all R residues, which are essentially needed for the arginine kinase reaction. Subsequently, site directed mutagenesis of the MgsR substrate was used to substitute all arginine residues with glutamate (R-E) to mimic arginine phosphorylation and to test their influence on MgsR degradation in vivo. It turned out, that especially the R33E and R94/95E residues (RRPI motif), the latter are adjacently located to the two redox-sensitive cysteines in a 3D model, have the potential to accelerate MgsR degradation. These results imply that selective arginine phosphorylation may have favorable effects for Clp dependent degradation of short-living regulatory proteins. We speculate that in addition to its kinase activity and adaptor function for the ClpC ATPase, McsB might also serve as a proteolytic adaptor for the ClpX ATPase in the degradation mechanism of MgsR.
The general stress response comprises approximately 200 genes and is driven by the alternative sigma factor SigB. Besides the process of sporulation with approximately 500 involved gene products under initial control of Spo0A are the two most significant and extensive cellular responses that can be observed in B. subtilis. The general stress response provides vegetative growing as well as non-growing and non-sporulating cells with a comprehensive cross-protective and preventive multiple stress resistance to various hostile environmental conditions. In contrast, the endospore is the most resistant but also dormant cell type produced by B. subtilis. The scope of this study was the identification of regulatory cascades driven by the general stress response sigma factor SigB to further elucidate the structure and function of the general stress regulon itself and to uncover potential intersections between the SigB response and other major developmental programs in the regulatory network of B. subtilis. It could be shown that the general stress regulon member yqgZ encodes a functional paralogue of Spx, the global regulator of the diamide stress regulon in B. subtilis. Global transcriptome and proteome studies led to the characterization of an YqgZ sub-regulon consisting of 53 positively and 18 negatively regulated genes. Due to its stringent SigB-dependent expression as well as its concerted action with SigB in regulation of its target genes YqgZ was renamed to MgsR which stands for “modulator of the general stress response”. Activity control of MgsR is stringently controlled at multiple levels. In addition to induction by SigB these mechanisms include (i) a positive autoregulatory loop of MgsR on the transcription level of its own structural gene, (ii) a post-translational redox-sensitive activation step by the formation of an intramolecular disulfide-bond within a conserved -CXXC-motif and (iii) rapid proteolytic degradation of MgsR by the ClpCP and ClpXP proteases, resul ting in extremely short in vivo half-lifes below 6 minutes. It was demonstrated that the activation of SigB is a prerequisite but not sufficient for a full expression of all general stress genes and that the SigB-dependent expression of MgsR provides the opportunity for additional redox-sensitive signal-reception, -processing and -integration beyond the primary decision of SigB activation. Our results describe a regulatory cascade integrating secondary oxidative stress signals into a SigB mediated regulatory cascade that is aimed at a precise fine tuning of target gene expression whose products are necessary for proper management of oxidative stress. Although primary oxidative stress stimuli do not typically induce SigB, our observation of redox-sensitive control by MgsR and several other reports that pointed at the implication of the general stress proteins in oxidative stress management led to the proposal that secondary oxidative stress may be a common component of multip le severe physical stress stimuli. This assumption could be supported by the results of a comprehensive phenotype screening of 94 mutants in single general stress genes upon treatment with hydrogen peroxide and the superoxide generating agent paraquat. A substantial amount of 62 mutants (66%) displayed significantly decreased survival rates in response to oxidative stress. The information gained by this phenotypic screening analysis provides a valuable basis for more directed assays to elucidate the biochemical functions of many so far uncharacterized general stress proteins and demonstrates that the SigB response and the regulatory fine tuning by MgsR plays a pivotal role in protection from secondary oxidative stress. Furthermore, it has been intensively discussed throughout the literature of the last years that the general stress response and the process of sporulation may represent mutually exclusive survival strategies of a non-growing B. subtilis cell, but the molecular basis for this assumption was missing until recently. By the identification of a functional SigB-type promoter (PsigB) adjacent to the spo0E, this gene was newly assigned to the general stress regulon. The spo0E gene encodes a phosphatase that specifically inactivates the master regulator of sporulation Spo0A~P by dephosphorylation. The SigB dependent induction of spo0E causes a block of sporulation specific transcription and produces a sporulation deficient phenotype. This effect was overcome by a deletion of the spo0E-SigB promoter, thus clearly addresses SigB activity. This regulatory mechanism is the first example for an integration of SigB inducing stimuli into the decision making process of sporulation initiation that provides a link to interconnect these two dominant and very likely mutually exclusive responses in the regulatory network of B. subtilis. The data presented here provide deeper insights into the structure and function of the general stress regulon in stress management.
Vector-based SARS-CoV-2 vaccines have been associated with vaccine- induced thrombosis with thrombocytopenia syndrome (VITT/TTS), but the causative factors are still unresolved. We comprehensively analyzed the ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2.S (Johnson and Johnson) vaccines. ChAdOx1 nCoV-19 contains significant amounts of host cell protein impurities, including functionally active proteasomes, and adenoviral proteins. A much smaller amount of impurities was found in Ad26.COV2.S. Platelet factor 4 formed complexes with ChAdOx1 nCoV-19 constituents, but not with purified virions from ChAdOx1 nCoV-19 or with Ad26.COV2.S. Vascular hyperpermeability was induced by ChAdOx nCoV-19 but not by Ad26.COV2.S. These differences in impurities together with EDTAinduced capillary leakage might contribute to the higher incidence rate of VITT associated with ChAdOx1 nCoV-19 compared to Ad26.COV2.S.
In proteomics, fast, efficient, and highly reproducible sample preparation is of utmost importance, particularly in view of fast scanning mass spectrometers enabling analyses of large sample series. To address this need, we have developed the web application MassSpecPreppy that operates on the open science OT-2 liquid handling robot from Opentrons. This platform can prepare up to 96 samples at once, performing tasks like BCA protein concentration determination, sample digestion with normalization, reduction/alkylation and peptide elution into vials or loading specified peptide amounts onto Evotips in an automated and flexible manner. The performance of the developed workflows using MassSpecPreppy was compared with standard manual sample preparation workflows. The BCA assay experiments revealed an average recovery of 101.3% (SD: ± 7.82%) for the MassSpecPreppy workflow, while the manual workflow had a recovery of 96.3% (SD: ± 9.73%). The species mix used in the evaluation experiments showed that 94.5% of protein groups for OT-2 digestion and 95% for manual digestion passed the significance thresholds with comparable peptide level coefficient of variations. These results demonstrate that MassSpecPreppy is a versatile and scalable platform for automated sample preparation, producing injection-ready samples for proteomics research.