Refine
Document Type
- Article (10)
- Doctoral Thesis (1)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- - (4)
- cold atmospheric plasma (4)
- Ewing’s sarcoma (2)
- apoptosis (2)
- <i>Staphylococcus aureus</i> (1)
- CAL 78 (1)
- CAP (1)
- Ewing sarcoma (1)
- Kaltes Plasma (1)
- NTP (1)
Institute
Publisher
- MDPI (9)
- Anticancer Research USA Inc. (1)
Das Nierenzellkarzinom (NZK) gehört zu den häufigsten malignen Erkrankungen in Deutschland. Während lokal begrenzte Tumoren nach chirurgischer Resektion eine sehr gute Prognose haben, liegt die mittlere 5-Jahres-Überlebensrate bei metastasierten NZK bei lediglich 17 %. Die schlechte Prognose ist unter anderem auf die Resistenz von NZK gegenüber klassischen Chemotherapeutika zurückzuführen. Moderne zielgerichtete Wirk-stoffe zeigen ein etwas besseres Ansprechen, allerdings werden komplette Remissionen nur in den seltensten Fällen beobachtet. Dies macht die Entwicklung neuer Behandlungs-methoden erforderlich.
Der Einsatz kalter atmosphärischer Plasmen (CAP) ist eine innovative und vielverspre-chende Therapieoption bei der Behandlung von Malignomen. Diverse Arbeiten zeigten eine antiproliferative Wirkung auf Krebszelllinien verschiedener Entitäten. Die Wirkung von CAP auf NZK-Zellen wurde bisher nicht untersucht und ist Gegenstand dieser Arbeit.
Wir konnten zeigen, dass CAP die Proliferation von humanen NZK-Zellen effektiv hemmt. Dies war einerseits auf die Induktion von Apoptose und andererseits auf eine Reduktion der Zellteilungsrate zurückzuführen. Neben der Wachstumshemmung konnten wir auch eine herabgesetzte Migrations- und Invasionsfähigkeit der Zellen nach CAP-Behandlung beobachten. Außerdem konnten wir zeigten, dass CAP zu einer Schädigung der Cyto-plasmamembran führt. Darüber hinaus wurde die Expression von Resistenzfaktoren durch eine CAP-Behandlung beeinflusst.
Diese in-vitro gewonnenen Erkenntnisse zeigen, dass CAP das Potential hat, die beste-henden Therapieoptionen bei NZK zu erweitern bzw. zu ergänzen.
(1) Background: Chondrosarcoma (CS) is a malignant primary bone tumor with a cartilaginous origin. Its slow cell division and severely restricted vascularization are responsible for its poor responsiveness to chemotherapy and radiotherapy. The decisive factor for the prognosis of CS patients is the only adequate therapy—surgical resection. Cold atmospheric pressure plasma (CAP) is emerging as a new option in anti-cancer therapy. Its effect on chondrosarcomas has been poorly investigated. (2) Methods: Two CS cell lines—SW 1353 and CAL 78—were used. Various assays, such as cell growth kinetics, glucose uptake, and metabolic activity assay, along with two different apoptosis assays were performed after CAP treatment. A radius cell migration assay was used to examine cell motility. (3) Results: Both cell lines showed different growth behavior, which was taken into account when using the assays. After CAP treatment, a reduction in metabolic activity was observed in both cell lines. The immediate effect of CAP showed a reduction in cell numbers and in influence on this cell line’s growth rate. The measurement of the glucose concentration in the cell culture medium showed an increase after CAP treatment. Live-dead cell imaging shows an increase in the proportion of dead cells over the incubation time for both cell lines. There was a significant increase in apoptotic signals after 48 h and 72 h for both cell lines in both assays. The migration assay showed that CAP treatment inhibited the motility of chondrosarcoma cells. The effects in all experiments were related to the duration of CAP exposure. (4) Conclusions: The CAP treatment of CS cells inhibits their growth, motility, and metabolism by initiating apoptotic processes.
Background: Cold atmospheric plasma (CAP) is increasingly used in the field of oncology.
Many of the mechanisms of action of CAP, such as inhibiting proliferation, DNA breakage, or the
destruction of cell membrane integrity, have been investigated in many different types of tumors.
In this regard, data are available from both in vivo and in vitro studies. Not only the direct treatment
of a tumor but also the influence on its blood supply play a decisive role in the success of the therapy
and the patient’s further prognosis. Whether the CAP influences this process is unknown, and the
first indications in this regard are addressed in this study. Methods: Two different devices, kINPen
and MiniJet, were used as CAP sources. Human endothelial cell line HDMEC were treated directly
and indirectly with CAP, and growth kinetics were performed. To indicate apoptotic processes,
caspase-3/7 assay and TUNEL assay were used. The influence of CAP on cellular metabolism
was examined using the MTT and glucose assay. After CAP exposure, tube formation assay was
performed to examine the capillary tube formation abilities of HDMEC and their migration was
messured in separate assays. To investigate in a possible mutagenic effect of CAP treatment,
a hypoxanthine-guanine-phosphoribosyl-transferase assay with non malignant cell (CCL-93) line was
performed. Results: The direct CAP treatment of the HDMEC showed a robust growth-inhibiting
effect, but the indirect one did not. The MMT assay showed an apparent reduction in cell metabolism
in the first 24 h after CAP treatment, which appeared to normalize 48 h and 72 h after CAP application.
These results were also confirmed by the glucose assay. The caspase 3/7 assay and TUNEL assay
showed a significant increase in apoptotic processes in the HDMEC after CAP treatment. These results
were independent of the CAP device. Both the migration and tube formation of HDMEC were
significant inhibited after CAP-treatment. No malignant effects could be demonstrated by the CAP
treatment on a non-malignant cell line.
Chondrosarcoma is the second most common malign bone tumor in adults. Surgical
resection of the tumor is recommended because of its resistance to clinical treatment such as
chemotherapy and radiation therapy. Thus, the prognosis for patients mainly depends on sufficient
surgical resection. Due to this, research on alternative therapies is needed. Cold atmospheric plasma
(CAP) is an ionized gas that contains various reactive species. Previous studies have shown an
anti-oncogenic potential of CAP on different cancer cell types. The current study examined the effects
of treatment with CAP on two chondrosarcoma cell lines (CAL-78, SW1353). Through proliferation
assay, the cell growth after CAP-treatment was determined. A strong antiproliferative effect for
both cell lines was detected. By fluorescein diacetate (FDA) assay and ATP release assay, alterations
in the cell membrane and associated translocation of low molecular weight particles through the
cytoplasmic membrane were observed. In supernatant, the non-membrane-permeable FDA and
endogenously synthesized ATP detected suggest an increased membrane permeability after CAP
treatment. Similar results were shown by the dextran-uptake assay. Furthermore, fluorescence
microscopic G-/F-actin assay was performed. G- and F-actin were selectively dyed, and the ratio
was measured. The presented results indicate CAP-induced changes in cell membrane function and
possible alterations in actin-cytoskeleton, which may contribute to the antiproliferative effects of CAP.
Background: The use of cold atmospheric plasma (CAP) in oncology has been intensively investigated over the past 15 years as it inhibits the growth of many tumor cells. It is known that reactive oxidative species (ROS) produced in CAP are responsible for this effect. However, to translate the use of CAP into medical practice, it is essential to know how CAP treatment affects non-malignant cells. Thus, the current in vitro study deals with the effect of CAP on human bone cancer cells and human osteoblasts. Here, identical CAP treatment regimens were applied to the malignant and non-malignant bone cells and their impact was compared. Methods: Two different human bone cancer cell types, U2-OS (osteosarcoma) and A673 (Ewing’s sarcoma), and non-malignant primary osteoblasts (HOB) were used. The CAP treatment was performed with the clinically approved kINPen MED. After CAP treatment, growth kinetics and a viability assay were performed. For detecting apoptosis, a caspase-3/7 assay and a TUNEL assay were used. Accumulated ROS was measured in cell culture medium and intracellular. To investigate the influence of CAP on cell motility, a scratch assay was carried out. Results: The CAP treatment showed strong inhibition of cell growth and viability in bone cancer cells. Apoptotic processes were enhanced in the malignant cells. Osteoblasts showed a higher potential for ROS resistance in comparison to malignant cells. There was no difference in cell motility between benign and malignant cells following CAP treatment. Conclusions: Osteoblasts show better tolerance to CAP treatment, indicated by less affected viability compared to CAP-treated bone cancer cells. This points toward the selective effect of CAP on sarcoma cells and represents a further step toward the clinical application of CAP.
Although Ewing’s sarcoma (ES) is a rare, but very aggressive tumor disease affecting the musculoskeletal system, especially in children, it is very aggressive and difficult to treat. Although medical advances and the establishment of chemotherapy represent a turning point in the treatment of ES, resistance to chemotherapy, and its side effects, continue to be problems. New treatment methods such as the application of cold physical plasma (CPP) are considered potential supporting tools since CPP is an exogenous source of reactive oxygen and nitrogen species, which have similar mechanisms of action in the tumor cells as chemotherapy. This study aims to investigate the synergistic effects of CPP and commonly used cytostatic chemotherapeutics on ES cells. The chemotherapy drugs doxorubicin and vincristine, the most commonly used in the treatment of ES, were applied to two different ES cell lines (RD-ES and A673) and their IC20 and IC50 were determined. In addition, individual chemotherapeutics in combination with CPP were applied to the ES cells and the effects on cell growth, cell viability, and apoptosis processes were examined. A single CPP treatment resulted in the dose-dependent growth inhibition of ES cells. The combination of different cytostatics and CPP led to significant growth inhibition, a reduction in cell viability, and higher rates of apoptosis compared to cells not additionally exposed to CPP. The combination of CPP treatment and the application of cytostatic drugs to ES cells showed promising results, significantly enhancing the cytotoxic effects of chemotherapeutic agents. These preclinical in vitro data indicate that the use of CPP can enhance the efficacy of common cytostatic chemotherapeutics, and thus support the translation of CPP as an anti-tumor therapy in clinical routine.
Osteosarcoma and Ewing’s sarcoma are the most common malignant bone tumors.Conventional therapies such as polychemotherapy, local surgery, and radiotherapy improve theclinical outcome for patients. However, they are accompanied by acute and chronic side effectsthat affect the quality of life of patients, motivating novel research lines on therapeutic optionsfor the treatment of sarcomas. Previous experimental work with physical plasma operated atbody temperature (cold atmospheric plasma, CAP) demonstrated anti-oncogenic effects on differentcancer cell types. This study investigated the anti-cancer effect of CAP on two bone sarcomaentities, osteosarcoma and Ewing’s sarcoma, which were represented by four cell lines (U2-OS,MNNG/HOS, A673, and RD-ES). A time-dependent anti-proliferative effect of CAP on all cell lineswas observed. CAP-induced alterations in cell membrane functionality were detected by performinga fluorescein diacetate (FDA) release assay and an ATP release assay. Additionally, modifications ofthe cell membrane and modifications in the actin cytoskeleton composition were examined usingfluorescence microscopy monitoring dextran-uptake assay and G-/F-actin distribution. Furthermore,the CAP-induced induction of apoptosis was determined by TUNEL and active caspases assays.The observations suggest that a single CAP treatment of bone sarcoma cells may have significantanti-oncogenic effects and thus may be a promising extension to existing applications.
Non-invasive physical plasma (NIPP) achieves biomedical effects primarily through the formation of reactive oxygen and nitrogen species. In clinical use, these species interact with cells of the treated tissue, affecting the cytoplasmic membrane first. The present study investigated the permeability of the cytoplasmic membrane of breast cancer cells with different fluorescent dyes after NIPP treatment and determined the subsequent effects on cell viability. After NIPP treatment and the associated formation of reactive oxygen species, low molecular weight compounds were able to pass through the cytoplasmic membrane in both directions to a higher extent. Consequently, a loss of cellular ATP into the extracellular space was induced. Due to these limitations in cell physiology, apoptosis was induced in the cancer cells and the entire cell population exhibited decreased cell growth. It can be concluded that NIPP treatment disturbs the biochemical functionality of the cytoplasmic membrane of cancer cells, which massively impairs their viability. This observation opens a vast application horizon of NIPP therapy to treat precancerous and malignant diseases beyond breast cancer therapy.
Background/Aim: The typical insulin deficiency in type 1 diabetes mellitus has general effects on metabolism and also affects bone quality. Materials and Methods: Two diabetic rat lines (BB/OK; BB.6KWR) and two non-diabetic rat strains (KWR and BB.14+18KWR), as control group, were included in the study. Bone mineral density, bone mineral content and body structure measurements were performed. The measurements took place before the onset of diabetes mellitus Results: A comparison of the groups showed increased bone density values of the diabetic rats in relation to the control groups. A new finding of increased bone density in the diabetic rats occurs. Conclusion: Diabetic rats showed no osteoporotic bone metabolism before the onset of clinically relevant type 1 diabetes mellitus, but rather increased bone metabolic activity.