Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- - (2)
- Skin barrier (2)
- 2-Phenoxyethanol (1)
- Antioxidants (1)
- Antiseptic efficacy (1)
- Bacteria (1)
- Fungi (1)
- Hair follicle (1)
- Octenidine dihydrochloride (1)
- Plasma treatment in vivo (1)
Institute
Publisher
- S. Karger AG (2)
Colonization and infection of wounds represent a major reason for the impairment of tissue repair. Recently, it has been reported that tissue-tolerable plasma (TTP) is highly efficient in the reduction of the bacterial load of the skin. In the present study, the antiseptic efficacy of TTP was compared to that of octenidine hydrochloride with 2-phenoxyethanol. Both antiseptic methods proved to be highly efficient. Cutaneous treatment of the skin with octenidine hydrochloride and 2-phenoxyethanol leads to a 99% elimination of the bacteria, and 74% elimination is achieved by TTP treatment. Technical challenges with an early prototype TTP device could be held responsible for the slightly reduced antiseptic properties of TTP, compared to a standard antiseptic solution, since the manual treatment of the skin surface with a small beam of the TTP device might have led to an incomplete coverage of the treated area.
Wound healing disorders frequently occur due to biofilm formation on wound surfaces requiring conscientious wound hygiene. Often, the application of conventional liquid antiseptics is not sufficient and sustainable as (1) the borders and the surrounding of chronic wounds frequently consist of sclerotic skin, impeding an effectual penetration of these products, and (2) the hair follicles representing the reservoir for bacterial recolonization of skin surfaces are not affected. Recently, it has been reported that tissue-tolerable plasma (TTP), which is used at a temperature range between 35 and 45°C, likewise has disinfecting properties. In the present study, the effectivity of TTP and a standard liquid antiseptic was compared in vitro on porcine skin. The results revealed that TTP was able to reduce the bacterial load by 94%, although the application of the liquid antiseptic remained superior as it reduced the bacteria by almost 99%. For in vivo application, however, TTP offers several advantages. On the one hand, TTP enables the treatment of sclerotic skin as well, and on the other hand, a sustainable disinfection can be realized as, obviously, also the follicular reservoir is affected by TTP.