Refine
Document Type
- Article (11)
Language
- English (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- - (5)
- biocatalysis (4)
- Biokatalyse (2)
- early-stage functionalisation (2)
- enzyme kits (2)
- late-stage functionalisation (2)
- lead diversification (2)
- transesterification (2)
- 7β-Hydroxylierung (1)
- Acyltransfer (1)
Institute
Publisher
- Wiley (7)
- ACS Publications (1)
Abstract
Promiscuous acyltransferase activity is the ability of certain hydrolases to preferentially catalyze acyl transfer over hydrolysis, even in bulk water. However, poor enantioselectivity, low transfer efficiency, significant product hydrolysis, and limited substrate scope represent considerable drawbacks for their application. By activity‐based screening of several hydrolases, we identified the family VIII carboxylesterase, EstCE1, as an unprecedentedly efficient acyltransferase. EstCE1 catalyzes the irreversible amidation and carbamoylation of amines in water, which enabled the synthesis of the drug moclobemide from methyl 4‐chlorobenzoate and 4‐(2‐aminoethyl)morpholine (ca. 20 % conversion). We solved the crystal structure of EstCE1 and detailed structure–function analysis revealed a three‐amino acid motif important for promiscuous acyltransferase activity. Introducing this motif into an esterase without acetyltransferase activity transformed a “hydrolase” into an “acyltransferase”.
Entdeckung und Design promiskuitiver Acyltransferase‐Aktivität in Carboxylesterasen der Familie VIII
(2021)
Abstract
Certain hydrolases preferentially catalyze acyl transfer over hydrolysis in an aqueous environment. However, the molecular and structural reasons for this phenomenon are still unclear. Herein, we provide evidence that acyltransferase activity in esterases highly correlates with the hydrophobicity of the substrate‐binding pocket. A hydrophobicity scoring system developed in this work allows accurate prediction of promiscuous acyltransferase activity solely from the amino acid sequence of the cap domain. This concept was experimentally verified by systematic investigation of several homologous esterases, leading to the discovery of five novel promiscuous acyltransferases. We also developed a simple yet versatile colorimetric assay for rapid characterization of novel acyltransferases. This study demonstrates that promiscuous acyltransferase activity is not as rare as previously thought and provides access to a vast number of novel acyltransferases with diverse substrate specificity and potential applications.
An Ultrasensitive Fluorescence Assay for the Detection of Halides and Enzymatic Dehalogenation
(2020)
Abstract
Halide assays are important for the study of enzymatic dehalogenation, a topic of great industrial and scientific importance. Here we describe the development of a very sensitive halide assay that can detect less than a picomole of bromide ions, making it very useful for quantifying enzymatic dehalogenation products. Halides are oxidised under mild conditions using the vanadium‐dependent chloroperoxidase from Curvularia inaequalis, forming hypohalous acids that are detected using aminophenyl fluorescein. The assay is up to three orders of magnitude more sensitive than currently available alternatives, with detection limits of 20 nM for bromide and 1 μM for chloride and iodide. We demonstrate that the assay can be used to determine specific activities of dehalogenases and validate this by comparison to a well‐established GC‐MS method. This new assay will facilitate the identification and characterisation of novel dehalogenases and may also be of interest to those studying other halide‐producing enzymes.
Abstract
First Aid Kits are collections of the most important medical equipment required for quick medical assistance. Similarly, enzyme kits can provide a proficient, ready‐ and easy‐to‐use collection of biocatalysts that can be applied with high reproducibility. In this article, we illustrate how kits of oxyfunctionalisation enzymes could operate as synthetic ‘First Aid’ for chemists working on complex natural product total synthesis in an early‐ or late‐stage fashion, as well as in lead diversification in drug discovery processes. We reason that enzyme kits could catalyse the integration of biocatalysis into (synthetic) organic chemistry and describe how we envision their future application.
Enzymatic degradation and recycling can reduce the environmental impact of plastics. Despite decades of research, no enzymes for the efficient hydrolysis of polyurethanes have been reported. Whereas the hydrolysis of the ester bonds in polyester‐polyurethanes by cutinases is known, the urethane bonds in polyether‐polyurethanes have remained inaccessible to biocatalytic hydrolysis. Here we report the discovery of urethanases from a metagenome library constructed from soil that had been exposed to polyurethane waste for many years. We then demonstrate the use of a urethanase in a chemoenzymatic process for polyurethane foam recycling. The urethanase hydrolyses low molecular weight dicarbamates resulting from chemical glycolysis of polyether‐polyurethane foam, making this strategy broadly applicable to diverse polyether‐polyurethane wastes.
First Aid Kits are collections of the most important medical equipment required for quick medical assistance. Similarly, enzyme kits can provide a proficient, ready‐ and easy‐to‐use collection of biocatalysts that can be applied with high reproducibility. In this article, we illustrate how kits of oxyfunctionalisation enzymes could operate as synthetic ‘First Aid’ for chemists working on complex natural product total synthesis in an early‐ or late‐stage fashion, as well as in lead diversification in drug discovery processes. We reason that enzyme kits could catalyse the integration of biocatalysis into (synthetic) organic chemistry and describe how we envision their future application.
Abstract
Halide methyltransferases (HMTs) enable the enzymatic synthesis of S‐adenosyl‐l‐methionine (SAM) from S‐adenosyl‐l‐homocysteine (SAH) and methyl iodide. Characterisation of a range of naturally occurring HMTs and subsequent protein engineering led to HMT variants capable of synthesising ethyl, propyl, and allyl analogues of SAM. Notably, HMTs do not depend on chemical synthesis of methionine analogues, as required by methionine adenosyltransferases (MATs). However, at the moment MATs have a much broader substrate scope than the HMTs. Herein we provide an overview of the discovery and engineering of promiscuous HMTs and how these strategies will pave the way towards a toolbox of HMT variants for versatile chemo‐ and regioselective biocatalytic alkylations.
Enzyme-catalyzed late-stage functionalization (LSF), such as methylation of drug molecules and lead structures, enables direct access to more potent active pharmaceutical ingredients (API). S-adenosyl-l-methionine-dependent methyltransferases (MTs) can play a key role in the development of new APIs, as they catalyze the chemo- and regioselective methylation of O-, N-, S- and C-atoms, being superior to traditional chemical routes. To identify suitable MTs, we developed a continuous fluorescence-based, high-throughput assay for SAM-dependent methyltransferases, which facilitates screening using E. coli cell lysates. This assay involves two enzymatic steps for the conversion of S-adenosyl-l-homocysteine into H2S to result in a selective fluorescence readout via reduction of an azidocoumarin sulfide probe. Investigation of two O-MTs and an N-MT confirmed that this assay is suitable for the determination of methyltransferase activity in E. coli cell lysates.