Refine
Document Type
- Article (7)
- Doctoral Thesis (1)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- - (4)
- eicosanoids (2)
- infection (2)
- 16S rRNA gene-sequencing (1)
- <i>S. aureus</i> (1)
- <i>S. pneumoniae</i> (1)
- Clp proteases (1)
- Coagulation (1)
- Eicosanoide (1)
- Group B streptococcus (1)
Institute
Publisher
- MDPI (4)
- Frontiers Media S.A. (1)
- S. Karger AG (1)
- Springer Nature (1)
Analysis of bioactive lipids from different infection models during bacterial and viral infections
(2021)
Bioactive lipids or lipid mediators influence numerous processes like the reproduction, the bone turnover, the pain perception, the cardiovascular function and the immune system. Eicosanoids and oxylipins are parts of the immunomodulatory lipid mediators, which can be synthesized from polyunsaturated fatty acids (PUFAs) by enzymatic and non-enzymatic reactions. Typical members of eicosanoids are prostaglandins and leukotrienes. The properties of bioactive lipids include the activation of inflammatory reactions as well as the support of resolution. Like hormones, they act locally restricted and in low concentrations. Further bioactive lipids exist i.e. intermediates of the sphingolipid class. The biosynthesis of some of these compounds like the prostaglandins can be influenced by different drugs whereas for other groups of lipid selective inhibitors are still missing. Their impact on inflammatory processes and against chronic diseases has already been analyzed, while studies in context with infection are largely limited. Infection of the upper respiratory tract caused by viral and bacterial pathogens constitute a huge burden for the human healthcare. The main pathogens are the Influenza A virus (IAV), Staphylococcus aureus (S. aureus), Streptococcus pneumoniae (S. pneumoniae) and Streptococcus pyogenes (S. pyogenes). Besides mono-infection with one of these pathogens, frequently occurring bacto-viral co-infections exist, which negatively influence the etiopathology. The main task of the immune system is the detection and the elimination of pathogens, which can essentially be affected by lipid mediators. Their instability due to oxidizability, the existence of regioisomers and the low abundance of eicosanoids and other oxylipins are the main problems for their analytical measurement.
The mayor objective of this dissertation was the establishment of a suitable analytical method for selected lipid mediators and the detection of infection-related changes. The separation and detection was performed by using high-performance liquid chromatography (HPLC) coupled with triple quad mass spectrometry. This combination is called tandem mass spectrometry (MS/MS). The MS parameters were optimized for approximately 30 lipid mediators by use of chemical standards and the detection was achieved by dynamic multiple reaction monitoring (MRM). Furthermore, the spatial resolution of selected sphingolipids was analyzed in tissue samples using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MS-Imaging). Concerning the HPLC-MS/MS detection, an MS method was established and optimized with standard compounds. Another crucial part of the establishment was the extraction of bioactive lipids from the different sampling materials. Whereas well tested protocols exist for the extraction and detection of lipid mediators, such protocols for MALDI-MS-Imaging are still limited due to the novelty of this measurement. Ultimately, robust and reproducible protocols for both techniques that were used for the analysis of a broad array of samples from infection experiments were established for both techniques. The analyses of infected cell culture, mice and pigs revealed infection-related perturbations of host lipid mediator levels. Depending on the scientific issue, the sample types cell pellets, lungs, spleens, livers, blood plasmas, pawns including bones or bronchoalveolar lavages were analyzed. For MALDI-MS-Imaging, the spatial distribution of sphingolipids in lung and spleen was detected.
The present dissertation includes four coherent research scopes, in which the pathogen impact on host-derived lipid mediators was detected with the above mentioned analytical methods. The infection models epithelial cells (article II), mouse (article III and IV) and pig (article I) – the latter as the most human like model - showed different aspects of the host-pathogen interaction. The analysis of samples from IAV infection for all three hosts revealed a couple of similarities for some oxylipins that were also described in human infections. Additionally, cell culture and mouse samples from mono-infections as well as co-infections with the pathogens S. aureus and S. pneumoniae were measured. In particular for the bacterial mono- and co-infections, these are the first published results with aspects of infection related changes of lipid mediators. The additional spatial resolution of the sphingolipid intermediates sphingosine 1-phosphate and ceramide 1-phosphate revealed important new insights into their tissue distribution and changes during co-infection.
Article I describes the IAV-specific oxylipin changes in the pig (german landrace) as infection model. Therefore, the sample types lung, spleen, blood plasma, and bronchoalveolar lavage from infected animals at different time points after infection were analyzed and compared with samples from uninfected pigs. Mainly in the lung and the spleen, increased amounts of certain lipid mediators were observed. These changes coincide well with already described alterations in humans and mice. Furthermore, the analysis of different sample material provided an overview about appropriate sample types. Surprisingly, many perturbations were detected in the spleen, which itself was uninfected. Based on the local reaction of lipid mediators, most studies concentrate on sample material with close contact to side of infection. Therefore, this dissertation reveals new insights into a form of systemic immune response. Besides the use of animals with a complex immune system for infection experiments, human bronchial epithelial cells (16HBE) were mono- and co-infected with the pathogens S. aureus, S. pneumoniae and IAV as described in article II. Such cells are the initial barrier for and first contact site with pathogens and thus the comprehension of this host-pathogen interaction is of essential importance. Most changes were detected during pneumococcal infection. Furthermore, the analyzed infections with bacterial pathogens differed from IAV infection by an increased synthesis of 5-hydroxyeicosatetraenoic acid (HETE). For further infections with the above mentioned pathogens, the mouse was used as an infection model. Besides infections affecting the respiratory tract, also the impact of an S. pyogenes infection in different mice strains was analyzed and described in article III. Infection-related changes in prostaglandins, which are involved in bone turnover in swollen pawns as well as enhanced amounts of sepsis- and arthritis-associated lipid mediators were detected, in case arthritis had been induced prior to infection. Furthermore, increased amounts of 20-HETE could be observed for such severe infections. An enhanced biosynthesis of 20-HETE was further confirmed in a high-pathogenic S. aureus LUG2012 infection in article IV for all examined sample types. In this last article of this dissertation, bacterial and viral infections in mice were analyzed similar to those described in article II. Mainly IAV-specific lipid mediator alterations were detected, which are in accordance with the findings of the infected pigs. The additional MALDI-MS-Imaging measurements revealed so far unknown accumulation of ceramide 1-phosphate in lung and spleen as well as enrichment in the red pulp of the spleen.
In summary, this dissertation provides substantial lipid mediator profiles for infections in three different model systems with selected bacterial and viral pathogens. The obtained data constitute a suitable basis for continuative research projects, in which the influence of single bioactive lipids on the course of infection could be examined in more detail.
Inflammatory Joint Disease Is a Risk Factor for Streptococcal Sepsis and Septic Arthritis in Mice
(2020)
Septic arthritis is a medical emergency associated with high morbidity and mortality, yet hardly any novel advances exist for its clinical management. Despite septic arthritis being a global health burden, experimental data uncovering its etiopathogenesis remain scarce. In particular, any interplay between septic arthritis and preceding joint diseases are unknown as is the contribution of the synovial membrane to the onset of inflammation. Using C57BL/6 mice as a model to study sepsis, we discovered that Group A Streptococcus (GAS) – an important pathogen causing septic arthritis - was able to invade the articular microenvironment. Bacterial invasion resulted in the infiltration of immune cells and detrimental inflammation. In vitro infected fibroblast-like synoviocytes induced the expression of chemokines (Ccl2, Cxcl2), inflammatory cytokines (Tnf, Il6), and integrin ligands (ICAM-1, VCAM-1). Apart from orchestrating immune cell attraction and retention, synoviocytes also upregulated mediators impacting on bone remodeling (Rankl) and cartilage integrity (Mmp13). Using collagen-induced arthritis in DBA/1 × B10.Q F1 mice, we could show that an inflammatory joint disease exacerbated subsequent septic arthritis which was associated with an excessive release of cytokines and eicosanoids. Importantly, the severity of joint inflammation controlled the extent of bone erosions during septic arthritis. In order to ameliorate septic arthritis, our results suggest that targeting synoviocytes might be a promising approach when treating patients with inflammatory joint disease for sepsis.
Introduction
Respiratory tract infections are a worldwide health problem for humans and animals. Different cell types produce lipid mediators in response to infections, which consist of eicosanoids like hydroxyeicosatetraenoic acids (HETEs) or oxylipins like hydroxydocosahexaenoic acids (HDHAs). Both substance classes possess immunomodulatory functions. However, little is known about their role in respiratory infections.
Objectives
Here, we aimed to analyze the lipid mediator imprint of different organs of C57BL/6J mice after intranasal mono-infections with Streptococcus pneumoniae (pneumococcus), Staphylococcus aureus or Influenza A virus (IAV) as wells as pneumococcal-IAV co-infection.
Methods
C57BL/6J mice were infected with different pathogens and lungs, spleen, and plasma were collected. Lipid mediators were analyzed using HPLC-MS/MS. In addition, spatial-distribution of sphingosine 1-phosphate (S1P) and ceramide 1-phosphates (C1P) in tissue samples was examined using MALDI-MS-Imaging. The presence of bacterial pathogens in the lung was confirmed via immunofluorescence staining.
Results
We found IAV specific changes for different HDHAs and HETEs in mouse lungs as well as enhanced levels of 20-HETE in severe S. aureus infection. Moreover, MALDI-MS-Imaging analysis showed an accumulation of C1P and a decrease of S1P during co-infection in lung and spleen. Long chain C1P was enriched in the red and not in the white pulp of the spleen.
Conclusions
Lipid mediator analysis showed that host synthesis of bioactive lipids is in part specific for a certain pathogen, in particular for IAV infection. Furthermore, MS-Imaging displayed great potential to study infections and revealed changes of S1P and C1P in lungs and spleen of co-infected animals, which was not described before.
Proteolysis is essential for all living organisms to maintain the protein homeostasis and to adapt to changing environmental conditions. ClpP is the main protease in Bacillus subtilis, and forms complexes with different Clp ATPases. These complexes play crucial roles during heat stress, but also in sporulation or cell morphology. Especially enzymes of cell wall-, amino acid-, and nucleic acid biosynthesis are known substrates of the protease ClpP during glucose starvation. The aim of this study was to analyze the influence of a clpP mutation on the metabolism in different growth phases and to search for putative new ClpP substrates. Therefore, B. subtilis 168 cells and an isogenic ∆clpP mutant were cultivated in a chemical defined medium, and the metabolome was analyzed by a combination of 1H-NMR, HPLC-MS, and GC-MS. Additionally, the cell morphology was investigated by electron microscopy. The clpP mutant showed higher levels of most glycolytic metabolites, the intermediates of the citric acid cycle, amino acids, and peptidoglycan precursors when compared to the wild-type. A strong secretion of overflow metabolites could be detected in the exo-metabolome of the clpP mutant. Furthermore, a massive increase was observed for the teichoic acid metabolite CDP-glycerol in combination with a swelling of the cell wall. Our results show a recognizable correlation between the metabolome and the corresponding proteome data of B. subtilis clpP mutant. Moreover, our results suggest an influence of ClpP on Tag proteins that are responsible for teichoic acids biosynthesis.
Prothrombotic and Proinflammatory Activities of the β-Hemolytic Group B Streptococcal Pigment
(2019)
A prominent feature of severe streptococcal infections is the profound inflammatory response that contributes to systemic toxicity. In sepsis the dysregulated host response involves both immunological and nonimmunological pathways. Here, we report a fatal case of an immunocompetent healthy female presenting with toxic shock and purpura fulminans caused by group B streptococcus (GBS; serotype III, CC19). The strain (LUMC16) was pigmented and hyperhemolytic. Stimulation of human primary cells with hyperhemolytic LUMC16 and STSS/NF-HH strains and pigment toxin resulted in a release of proinflammatory mediators, including tumor necrosis factor, interleukin (IL)-1β, and IL-6. In addition, LUMC16 induced blood clotting and showed factor XII activity on its surface, which was linked to the presence of the pigment. The expression of pigment was not linked to a mutation within the CovR/S region. In conclusion, our study shows that the hemolytic lipid toxin contributes to the ability of GBS to cause systemic hyperinflammation and interferes with the coagulation system.
Swine are regarded as promising biomedical models, but the dynamics of theirgastrointestinal microbiome have been much less investigated than that of humans or mice. The aimof this study was to establish an integrated multi-omics protocol to investigate the fecal microbiomeof healthy swine. To this end, a preparation and analysis protocol including integrated samplepreparation for meta-omics analyses of deep-frozen feces was developed. Subsequent data integrationlinked microbiome composition with function, and metabolic activity with protein inventories, i.e.,16S rRNA data and expressed proteins, and identified proteins with corresponding metabolites.16S rRNA gene amplicon and metaproteomics analyses revealed a fecal microbiome dominated byPrevotellaceae,Lactobacillaceae,Lachnospiraceae,RuminococcaceaeandClostridiaceae.Similar microbiomecompositions in feces and colon, but not ileum samples, were observed, showing that feces can serveas minimal-invasive proxy for porcine colon microbiomes. Longitudinal dynamics in composition,e.g., temporal decreased abundance ofLactobacillaceaeandStreptococcaceaeduring the experiment,were not reflected in microbiome function. Instead, metaproteomics and metabolomics showed arather stable functional state, as evident from short-chain fatty acids (SCFA) profiles and associatedmetaproteome functions, pointing towards functional redundancy among microbiome constituents.In conclusion, our pipeline generates congruent data from different omics approaches on the taxonomyand functionality of the intestinal microbiome of swine.