Refine
Year of publication
- 2007 (1)
Document Type
- Doctoral Thesis (1)
Language
- German (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- Biosensor (1)
- Flavinemononucleotide (1)
- Flavinmononukleotid (1)
- Fluoreszenzmarkierung (1)
- Gentherapie (1)
- RNS-Reparatur (1)
- RNS-Synthese (1)
- Riboswitch (1)
- Ribozym (1)
- Spinmarkierung (1)
Institute
Ribozyme sind katalytisch aktive RNA-Strukturen, die unter anderem in viralen Satelliten-RNAs entdeckt wurden, wo sie durch reversible Spaltung des Phosphatrückgrates die virale Replikation unterstützen. Durch gezielte strukturelle Manipulation von Ribozymen entstehen wertvolle Werkzeuge, die in vielen bioanalytischen, biotechnologischen und gentherapeutischen Bereichen Anwendung finden. Diese Arbeit beschäftigt sich mit dem funktionalen Design von verschiedenen Ribozymmotiven, deren kinetische und strukturelle Charakterisierung sowie deren potentielle Anwendung. In einem ersten Projekt sollten durch rationales Design RNA-Schalter, sogenannte Riboswitches, entwickelt werden. Die Aktivität dieser schaltbaren Ribozyme hängt von einem externen Kofaktor ab. Solche Konstrukte können durch gezielte Kombination einer natürlichen Ribozymdomäne mit einer Aptamerdomäne, die spezifisch einen Kofaktor (darunter Nukleinsäuren, Peptide, organische Moleküle und Metallionen) binden kann, gewonnen werden. Durch Bindung dieses Kofaktors wird eine konformelle Änderung innerhalb der Ribozymstruktur erzwungen die einen Anstieg- oder Abfall der katalytischen Aktivität zur Folge hat. Derartige Systeme besitzen biosensorisches Potential. Betrachtet man den Kofaktor als Analyten, kann das Bindungsereignis, also die Detektion, über ein Spaltereignis beobachtet werden. Die Reversibilität solcher Detektionssysteme konnte bisher nicht demonstriert werden, würde aber deren Attraktivität und Anwendungspotential erhöhen. In dieser Arbeit wurden Ribozyme auf Basis des Hairpin-Motivs entwickelt, die in Abhängigkeit von Flavinmononukleotid (FMN) aktiv sind. Um die Reversibilität des Prozesses zu gestatten, müsste FMN beliebig aus der Aptamerdomäne entfernt und in diese wieder eingelagert werden können. Dies sollte über die Kontrolle der Molekülgeometrie des Kofaktors erfolgen. Durch chemische Reduktion von FMN werden strukturelle und elektronische Veränderungen innerhalb des Moleküls hervorgerufen, die die Bindungsaffinität verringern sollten. Versuche mit Reduktionsmitteln konnten die Reversibilität des Schaltvorganges in einem ersten Ansatz demonstrieren. Um ein mehrmaliges, kontrolliertes Schalten zu gestatten, wurde zur gezielten Manipulation des Oxidationszustandes von FMN eine elektrochemische Zelle entwickelt. Dazu musste das klassische Drei-Elektroden-System dem hier vorliegenden System angepasst werden. Zum einen muss die quantitative Reduktion/Oxidation von FMN in einem kleinen Probenvolumen von einigen Mikrolitern gewährleistet werden, zum anderen sollte unter Sauerstoffausschluss gearbeitet werden, um unerwünschte Reoxidationsprozesse zu verhindern. Mit der entwickelten Zelle konnte in einem Spaltexperiment ansatzweise die Verringerung der Ribozymaktivität durch elektrochemische Reduktion des Kofaktors demonstriert werden. Schnelles und präzises Schalten des Systems wurde durch Diffusionsprozesse der reagierenden Spezies zur Elektrodenoberfläche limitiert und konnte mit dieser Anordnung nicht demonstriert werden. Neben kinetischen Studien sollten strukturelle Untersuchungen die Charakterisierung des RNA-Schalters vervollständigen. Hierbei wurden die konformellen Änderungen innerhalb des Ribozyms bei Bindung des Kofaktors ESR-spektroskopisch studiert. Allgemein müssen dazu Nukleinsäuren mit paramagnetischen Spinsonden markiert werden. In diesem Zusammenhang wurden Synthese- und Markierungsmethoden zum Erhalt spinmarkierter Oligonukleotide etabliert. Ein zweites Projekt beschäftigte sich mit der Entwicklung von Reparatursystemen auf Basis kleiner katalytischer RNA-Motive. Die in diesem Zusammenhang entwickelten Twinribozyme besitzen großes Potential zur Reparatur von Gendefekten auf RNA-Ebene. Hierbei wird ein kurzer Sequenzabschnitt innerhalb eines RNA-Stranges gegen eine alternative Sequenz durch doppelte Spaltung und Ligation ausgetauscht. Diese Methode sollte es ermöglichen, mutierte Sequenzbereiche auf mRNA-Ebene gegen die entsprechend korrekte Sequenz zu ersetzen und Gendefekte zu beheben. Twinribozyme entstehen durch Duplikation zweier katalytischer Motive und wurden als erstes unter Verwendung des Hairpinribozymmotivs entwickelt. Da nicht alle Substratsequenzen vom Hairpinribozym toleriert werden, wurde im Rahmen dieser Arbeit die Eignung eines Hammerheadribozyms zur Entwicklung eines Twinribozyms überprüft, um die Palette derartiger Werkzeuge zu erweitern. Gezeigt werden konnte, dass der Austausch einer Sequenz zwar katalysiert wird, die geringe Produktausbeute von nur 3% eine gentherapeutische Anwendung zunächst noch in Frage stellt. Hier sollten strukturelle Optimierungen des Systems zu einem besseren Ergebnis führen. Insgesamt konnte demonstriert werden, dass die Aktivität von RNA-Enzymen gezielt durch die Einführung von charakteristischen Strukturelementen manipuliert und kontrolliert werden kann und somit Systeme mit hohem Anwendungspotential geschaffen wurden.