Refine
Document Type
- Article (8)
- Doctoral Thesis (1)
Language
- English (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- - (2)
- podocyte (2)
- Angiotensin (1–7) (1)
- Angiotensin I-converting enzyme 2 (1)
- Aristolochic acid I (1)
- Chronic kidney disease (1)
- Fluorescence microscopy (1)
- Glomerular disease (1)
- Intellectual disability (1)
- Learning (1)
Institute
- Institut für Anatomie und Zellbiologie (5)
- Institut für Immunologie u. Transfusionsmedizin - Abteilung Transfusionsmedizin (1)
- Institut für Physiologie (1)
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung (UMG) (1)
- Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie/Plastische Operationen (1)
- Kliniken und Polikliniken für Innere Medizin (1)
Publisher
- Springer Nature (2)
- Ferrata Storti Foundation (1)
- Frontiers Media S.A. (1)
- MDPI (1)
- Nature Publishing Group (1)
- S. Karger AG (1)
- Wiley (1)
Scribble complex proteins can influence cell fate decisions and self-renewal capacity of hematopoietic cells. While specific cellular functions of Scribble complex members are conserved in mammalian hematopoiesis, they appear to be highly context dependent. Using CRISPR/Cas9-based genetic screening, we have identified Scribble complex-related liabilities in AML including LLGL1. Despite its reported suppressive function in HSC self-renewal, inactivation of LLGL1 in AML confirms its relevant role for proliferative capacity and development of AML. Its function was conserved in human and murine models of AML and across various genetic backgrounds. Inactivation of LLGL1 results in loss of stemness-associated gene-expression including HoxA-genes and induces a GMP-like phenotype in the leukemia stem cell compartment. Re-expression of HoxA9 facilitates functional and phenotypic rescue. Collectively, these data establish LLGL1 as a specific dependency and putative target in AML and emphasizes its cell-type specific functions.
The global prevalence of kidney diseases has been steadily rising over the last decades. Today, around 10% of the world population suffers from relevant chronic kidney disease. Podocytes are highly specialized and terminally differentiated cells residing in the filtering units of the kidneys, the so-called glomeruli. With their interdigitating foot-processes, these cells are a crucial part of the renal filtration barrier. As podocytes are post-mitotic, injury or loss of these cells results in an impairment of the filtration barrier with subsequent loss of global kidney function. Therefore, the question whether a relevant amount of podocytes can be regenerated and if this regeneration can be influenced is crucial for future therapeutic developments. As in vivo microscopic imaging of podocytes in higher animals like mice or rats is rather challenging, larval zebrafish have been applied as an animal model for podocyte development and kidney filtration. 48 hours post fertilization, zebrafish larvae develop a single filtering glomerulus with a similar morphology and molecular construction to that in mammals. For evaluation of podocyte morphology and filtration, we used transgenic zebrafish strains in which podocytes were labeled with fluorescence proteins. Additionally, podocytes expressed the bacterial enzyme nitroreductase fused to the fluorescence protein mCherry. In this model, application of the antibiotic metronidazole leads to podocyte-specific cell death. Through cross-breeding we established strains that additionally express an eGFP-labeled protein in the blood plasma. Using in vivo two-photon microscopy, we could image podocyte-loss induced impairments of the glomerular filtration barrier. Additionally, we tracked characteristic morphological changes of podocyte morphology including podocyte foot process effacement, development of sub-podocyte pseudocysts and finally detachment of whole cells from the glomerular basement membrane. These changes have been before described histologically in different animal models as well as in patient biopsies. Using the in vivo microscopy approach, we could clearly describe the temporal sequence of these alterations. Finally, we also tracked individual, non-detached podocytes over up to 24 hours, and found that these cells were non-migratory. These results show that early podocyte-regeneration through immigration of intra- or extraglomerular cells is unlikely within the first 24 hours of acute glomerular injury.
Together with endothelial cells and the glomerular basement membrane, podocytes form the size-specific filtration barrier of the glomerulus with their interdigitating foot processes. Since glomerulopathies are associated with so-called foot process effacement—a severe change of well-formed foot processes into flat and broadened processes—visualization of the three-dimensional podocyte morphology is a crucial part for diagnosis of nephrotic diseases. However, interdigitating podocyte foot processes are too narrow to be resolved by classic light microscopy due to Ernst Abbe's law making electron microscopy necessary. Although three dimensional electron microscopy approaches like serial block face and focused ion beam scanning electron microscopy and electron tomography allow volumetric reconstruction of podocytes, these techniques are very time-consuming and too specialized for routine use or screening purposes. During the last few years, different super-resolution microscopic techniques were developed to overcome the optical resolution limit enabling new insights into podocyte morphology. Super-resolution microscopy approaches like three dimensional structured illumination microscopy (3D-SIM), stimulated emission depletion microscopy (STED) and localization microscopy [stochastic optical reconstruction microscopy (STORM), photoactivated localization microscopy (PALM)] reach resolutions down to 80–20 nm and can be used to image and further quantify podocyte foot process morphology. Furthermore, in vivo imaging of podocytes is essential to study the behavior of these cells in situ. Therefore, multiphoton laser microscopy was a breakthrough for in vivo studies of podocytes in transgenic animal models like rodents and zebrafish larvae because it allows imaging structures up to several hundred micrometer in depth within the tissue. Additionally, along with multiphoton microscopy, lightsheet microscopy is currently used to visualize larger tissue volumes and therefore image complete glomeruli in their native tissue context. Alongside plain visualization of cellular structures, atomic force microscopy has been used to study the change of mechanical properties of podocytes in diseased states which has been shown to be a culprit in podocyte maintenance. This review discusses recent advances in the field of microscopic imaging and demonstrates their currently used and other possible applications for podocyte research.
The local anesthetic lidocaine, which has been used extensively during liposuction, has been
reported to have cytotoxic effects and therefore would be unsuitable for use in autologous lipotransfer.
We evaluated the effect of lidocaine on the distribution, number, and viability of adipose-derived stem
cells (ASCs), preadipocytes, mature adipocytes, and leukocytes in the fatty and fluid portion of the
lipoaspirate using antibody staining and flow cytometry analyses. Adipose tissue was harvested from
11 female patients who underwent liposuction. Abdominal subcutaneous fat tissue was infiltrated
with tumescent local anesthesia, containing lidocaine on the left and lacking lidocaine on the right
side of the abdomen, and harvested subsequently. Lidocaine had no influence on the relative
distribution, cell number, or viability of ASCs, preadipocytes, mature adipocytes, or leukocytes in the
stromal-vascular fraction. Assessing the fatty and fluid portions of the lipoaspirate, the fatty portions
contained significantly more ASCs (p < 0.05), stem cells expressing the preadipocyte marker Pref-1
(p < 0.01 w/lidocaine, p < 0.05 w/o lidocaine), and mature adipocytes (p < 0.05 w/lidocaine, p < 0.01
w/o lidocaine) than the fluid portions. Only the fatty portion should be used for transplantation. This
study found no evidence that would contraindicate the use of lidocaine in lipotransfer. Limitations of
the study include the small sample size and the inclusion of only female patients.
Vector-based SARS-CoV-2 vaccines have been associated with vaccine- induced thrombosis with thrombocytopenia syndrome (VITT/TTS), but the causative factors are still unresolved. We comprehensively analyzed the ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2.S (Johnson and Johnson) vaccines. ChAdOx1 nCoV-19 contains significant amounts of host cell protein impurities, including functionally active proteasomes, and adenoviral proteins. A much smaller amount of impurities was found in Ad26.COV2.S. Platelet factor 4 formed complexes with ChAdOx1 nCoV-19 constituents, but not with purified virions from ChAdOx1 nCoV-19 or with Ad26.COV2.S. Vascular hyperpermeability was induced by ChAdOx nCoV-19 but not by Ad26.COV2.S. These differences in impurities together with EDTAinduced capillary leakage might contribute to the higher incidence rate of VITT associated with ChAdOx1 nCoV-19 compared to Ad26.COV2.S.
Increasing the information depth of single kidney biopsies can improve diagnostic precision, personalized medicine and accelerate basic kidney research. Until now, information on mRNA abundance and morphologic analysis has been obtained from different samples, missing out on the spatial context and single-cell correlation of findings. Herein, we present scoMorphoFISH, a modular toolbox to obtain spatial single-cell single-mRNA expression data from routinely generated kidney biopsies. Deep learning was used to virtually dissect tissue sections in tissue compartments and cell types to which single-cell expression data were assigned. Furthermore, we show correlative and spatial single-cell expression quantification with super-resolved podocyte foot process morphometry. In contrast to bulk analysis methods, this approach will help to identify local transcription changes even in less frequent kidney cell types on a spatial single-cell level with single-mRNA resolution. Using this method, we demonstrate that ACE2 can be locally upregulated in podocytes upon injury. In a patient suffering from COVID-19-associated collapsing FSGS, ACE2 expression levels were correlated with intracellular SARS-CoV-2 abundance. As this method performs well with standard formalin-fixed paraffin-embedded samples and we provide pretrained deep learning networks embedded in a comprehensive image analysis workflow, this method can be applied immediately in a variety of settings.
SLC35F1 is a member of the sugar-like carrier (SLC) superfamily that is expressed in the mammalian brain. Malfunction of SLC35F1 in humans is associated with neurodevelopmental disorders. To get insight into the possible roles of Slc35f1 in the brain, we generated Slc35f1-deficient mice. The Slc35f1-deficient mice are viable and survive into adulthood, which allowed examining adult Slc35f1-deficient mice on the anatomical as well as behavioral level. In humans, mutation in the SLC35F1 gene can induce a Rett syndrome-like phenotype accompanied by intellectual disability (Fede et al. Am J Med Genet A 185:2238–2240, 2021). The Slc35f1-deficient mice, however, display only a very mild phenotype and no obvious deficits in learning and memory as, e.g., monitored with the novel object recognition test or the Morris water maze test. Moreover, neuroanatomical parameters of neuronal plasticity (as dendritic spines and adult hippocampal neurogenesis) are also unaltered. Thus, Slc35f1-deficient mice display no major alterations that resemble a neurodevelopmental phenotype.
The renal renin-angiotensin system (RAS) is involved in the development of chronic kidney disease. Here, we investigated whether mice with reduced renal angiotensin I-converting enzyme (ACE−/−) are protected against aristolochic acid nephropathy (AAN). To further elucidate potential molecular mechanisms, we assessed the renal abundances of several major RAS components. AAN was induced using aristolochic acid I (AAI). Glomerular filtration rate (GFR) was determined using inulin clearance and renal protein abundances of renin, angiotensinogen, angiotensin I-converting enzyme (ACE) 2, and Mas receptor (Mas) were determined in ACE−/− and C57BL/6J control mice by Western blot analyses. Renal ACE activity was determined using a colorimetric assay and renal angiotensin (Ang) (1–7) concentration was determined by ELISA. GFR was similar in vehicle-treated mice of both strains. AAI decreased GFR in controls but not in ACE−/− mice. Furthermore, AAI decreased renal ACE activity in controls but not in ACE−/− mice. Vehicle-treated ACE−/− mice had significantly higher renal ACE2 and Mas protein abundances than controls. AAI decreased renal ACE2 protein abundance in both strains. Furthermore, AAI increased renal Mas protein abundance, although the latter effect did not reach statistical significance in the ACE−/− mice. Renal Ang(1–7) concentration was similar in vehicle-treated mice of both strains. AAI increased renal Ang(1–7) concentration in the ACE−/− mice but not in the controls. Mice with reduced renal ACE are protected against AAN. Our data suggest that in the face of renal ACE deficiency, AAI may activate the ACE2/Ang(1–7)/Mas axis, which in turn may deploy its reno-protective effects.
Super-Resolution Microscopy: A Technique to Revolutionize Research and Diagnosis of Glomerulopathies
(2022)
Background: For decades, knowledge about glomerular (patho)physiology has been tightly linked with advances in microscopic imaging technology. For example, the invention of electron microscopy was required to hypothesize about the mode of glomerular filtration barrier function.
Summary: Super-resolution techniques, defined as fluorescence microscopy approaches that surpass the optical resolution limit of around 200 nm, have been made available to the scientific community. Several of these different techniques are currently in use in glomerular research. Using three-dimensional structured illumination microscopy, the exact morphology of the podocyte filtration slit can be morphometrically analyzed and quantitatively compared across samples originating from animal models or human biopsies.
Key Messages: Several quantitative image analysis approaches and their potential influence on glomerular research and diagnostics are discussed. By improving not only optical resolution but also information content and turnaround time, super-resolution microscopy has the potential to expand the diagnosis of glomerular disease. Soon, these approaches could be introduced into glomerular disease diagnosis.