Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- IgE (3)
- - (2)
- allergy (2)
- Allergen (1)
- Allergic diseases (1)
- Allergy (1)
- Bacteria (1)
- COVID-19 vaccination (1)
- HCoV (1)
- Staphylococci (1)
Publisher
- Frontiers Media S.A. (2)
- MDPI (1)
Humans are exposed to a plethora of microorganisms that reside on outer and inner body surfaces. These are collectively referred to as the human microbiome. The evolutionary relationship between humans and their microbiome is very complex. It is now widely accepted that these microorganisms are not just passive spectators but play an important role in health. The presence or absence of certain microbes is also linked to various diseases, including inflammatory bowel disease, cardiovascular disease, obesity, cancer, and allergies.
Allergies are several conditions caused by a misguided immune response to foreign antigens that are typically harmless. Common allergic diseases include atopic dermatitis (AD), allergic asthma, hay fever, and anaphylaxis. The incidences of allergic diseases are continuously rising, with up to 40% of the human population thought to be sensitised to environmental antigens. This increased incidence is not simply the result of societies becoming more aware and better at diagnosing these diseases. It is believed that the increases in allergies and sensitisation have environmental causes and are related to Western lifestyles. It is known that the rate of allergies is less frequent in developing countries. They are also more likely to occur in urban than rural areas. The prevailing view of the involvement of bacteria in allergies is described by the hygiene hypothesis. The hypothesis claims that decreased exposure to diverse microbial communities early in life increases the risk of developing allergic diseases. There are numerous examples to support this claim. For example, children born and raised in close contact to farm animals or in the presence of pets, and who are thus in direct and constant contact with a complex microbial environment, are protected from allergic diseases. On the other hand, colonisation or infection with certain bacteria increases allergic disease risks. This seems to contradict the hygiene hypothesis.
It appears that the members of the microbiome have different effects on allergy, and the hygiene hypothesis may not apply to every player in the complex microbial diversity that humans are in contact with. Therefore, a better understanding of the host bacterial interaction is required on the level of bacterial species.
This work studies the interplay between bacteria and the immune system to identify and characterise bacterial components with allergenic properties. In this quest, Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) were investigated for their allergenic properties and involvement in different allergic diseases. In the case of S. aureus, evidence is presented on allergic implications for two different components; serine protease-like proteins (Spls) and superantigens (SAg). Furthermore, experimental support is provided on the allergenic properties of the extracellular serine protease (Esp) from S. epidermidis. We argue that stimulating allergic reactions by staphylococci is an immune evasion mechanism that increases the survival chances of the bacteria within the host.
In chapter 1, an introduction is given to both S. aureus and S. epidermidis and their interactions with the immune system. Also, the bacterial components with allergenic properties and allergic diseases with known bacterial involvement are presented. Finally, the question of why bacteria cause allergy is discussed.
Chapter 2 describes allergic reactions to the Spls of S. aureus in a cohort of cystic fibrosis patients. Chapter 3 focuses on the SAgs of S. aureus. SAgs were discovered more than 30 years ago, but their physiological function is still under discussion. In this chapter, the allergenic properties of SAgs and their possible immunological mechanisms are reviewed, and a possible link between SAgs and allergic diseases is discussed. In chapter 4, the focus shifts to S. epidermidis and its involvement in AD. The human immune response to the Esp from S. epidermidis is characterised in healthy and AD individuals. The allergenic properties of Esp imply a detrimental role of S. epidermidis in AD. Finally, chapter 5 summarises and discusses the results of this thesis. In this section, the pieces are put together, and attention is brought back to the question of why bacteria cause allergies.
In cystic fibrosis (CF) infectious and allergic airway inflammation cause pulmonary exacerbations that destroy the lungs. Staphylococcus aureus is a common long-term colonizer and cause of recurrent airway infections in CF. The pathogen is also associated with respiratory allergy; especially the staphylococcal serine protease-like proteins (Spls) can induce type 2 immune responses in humans and mice. We measured the serum IgE levels specific to 7 proteases of S. aureus by ELISA, targeting 5 Spls (76 CF patients and 46 controls) and the staphopains A and B (16 CF patients and 46 controls). Then we compared cytokine release and phenotype of T cells that had been stimulated with Spls between 5 CF patients and 5 controls. CF patients had strongly increased serum IgE binding to all Spls but not to the staphopains. Compared to healthy controls, their Spl-stimulated T cells released more type 2 cytokines (IL-4, IL-5, IL-13) and more IL-6 with no difference in the secretion of type 1- or type 3 cytokines (IFNγ, IL-17A, IL-17F). IL-10 production was low in CF T cells. The phenotype of the Spl-exposed T cells shifted towards a Th2 or Th17 profile in CF but to a Th1 profile in controls. Sensitization to S. aureus Spls is common in CF. This discovery could explain episodes of allergic inflammation of hitherto unknown causation in CF and extend the diagnostic and therapeutic portfolio.
Staphylococcus aureussuperantigens (SAgs) are among the most potent T cell mitogensknown.They stimulate large fractions of T cells by cross-linking their T cell receptor withmajor histocompatibility complex class-II molecules on antigen presenting cells, resulting in Tcell proliferation and massive cytokine release. To date, 26 different SAgs have been described in thespeciesS. aureus; they comprise the toxic shock syndrome toxin (TSST-1), as well as 25 staphylococcalenterotoxins (SEs) or enterotoxin-like proteins (SEls). SAgs can cause staphylococcal food poisoningand toxic shock syndrome and contribute to the clinical symptoms of staphylococcal infection. Inaddition, there is growing evidence that SAgs are involved in allergic diseases. This review providesan overview on recent epidemiological data on the involvement ofS. aureusSAgs and anti-SAg-IgEin allergy, demonstrating that being sensitized to SEs—in contrast to inhalant allergens—is associatedwith a severe disease course in patients with chronic airway inflammation. The mechanisms by whichSAgs trigger or amplify allergic immune responses, however, are not yet fully understood. Here, wediscuss known and hypothetical pathways by which SAgs can drive an atopic disease
Introduction
COVID-19 vaccines are highly effective in inducing protective immunity. While the serum antibody response to COVID-19 vaccination has been studied in depth, our knowledge of the underlying plasmablast and memory B cell (Bmem) responses is still incomplete. Here, we determined the antibody and B cell response to COVID-19 vaccination in a naïve population and contrasted it with the response to a single influenza vaccination in a primed cohort. In addition, we analyzed the antibody and B cell responses against the four endemic human coronaviruses (HCoVs).
Methods
Measurement of specific plasma IgG antibodies was combined with functional analyses of antibody-secreting plasmablasts and Bmems. SARS-CoV-2- and HCoV-specific IgG antibodies were quantified with an in-house bead-based multiplexed immunoassay.
Results
The antibody and B cell responses to COVID-19 vaccination reflected the kinetics of a prime-boost immunization, characterized by a slow and moderate primary response and a faster and stronger secondary response. In contrast, the influenza vaccinees possessed robust immune memory for the vaccine antigens prior to vaccination, and the recall vaccination moderately boosted antibody production and Bmem responses. Antibody levels and Bmem responses waned several months after the 2 nd COVID-19 vaccination, but were restored upon the 3 rd vaccination. The COVID-19 vaccine-induced antibodies mainly targeted novel, non-cross-reactive S1 epitopes of the viral spike protein, while cross-reactive S2 epitopes were less immunogenic. Booster vaccination not only strongly enhanced neutralizing antibodies against an original SARS-CoV-2 strain, but also induced neutralizing antibodies against the Omicron BA.2 variant. We observed a 100% plasma antibody prevalence against the S1 subunits of HCoVs, which was not affected by vaccination.
Discussion
Overall, by complementing classical serology with a functional evaluation of plasmablasts and memory B cells we provide new insights into the specificity of COVID-19 vaccine-induced antibody and B cell responses.