Refine
Document Type
- Article (9)
Language
- English (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- - (3)
- 16S rRNA gene sequencing (2)
- greenhouse gas (2)
- metaproteomics (2)
- methane (2)
- 16S rRNA gene-sequencing (1)
- Upland soil cluster (1)
- biomedical model swine (1)
- community detection (1)
- drainage (1)
Institute
Publisher
- MDPI (3)
- Frontiers Media S.A. (2)
- American Society for Microbiology (ASM) (1)
- Nature Publishing Group (1)
- Wiley (1)
Drained peatlands are significant sources of the greenhouse gas (GHG) carbon dioxide.Rewetting is a proven strategy used to protect carbon stocks; however, it can lead to increasedemissions of the potent GHG methane. The response to rewetting of soil microbiomes as drivers ofthese processes is poorly understood, as are the biotic and abiotic factors that control communitycomposition. We analyzed the pro- and eukaryotic microbiomes of three contrasting pairs ofminerotrophic fens subject to decade-long drainage and subsequent long-term rewetting. Abiotic soilproperties including moisture, dissolved organic matter, methane fluxes, and ecosystem respirationrates were also determined. The composition of the microbiomes was fen-type-specific, but allrewetted sites showed higher abundances of anaerobic taxa compared to drained sites. Based onmulti-variate statistics and network analyses, we identified soil moisture as a major driver ofcommunity composition. Furthermore, salinity drove the separation between coastal and freshwaterfen communities. Methanogens were more than 10-fold more abundant in rewetted than in drainedsites, while their abundance was lowest in the coastal fen, likely due to competition with sulfatereducers. The microbiome compositions were reflected in methane fluxes from the sites. Our resultsshed light on the factors that structure fen microbiomes via environmental filtering.
Influenza A Virus (IAV) infection followed by bacterial pneumonia often leads to hospitalization and death in individuals from high risk groups. Following infection, IAV triggers the process of viral RNA replication which in turn disrupts healthy gut microbial community, while the gut microbiota plays an instrumental role in protecting the host by evolving colonization resistance. Although the underlying mechanisms of IAV infection have been unraveled, the underlying complex mechanisms evolved by gut microbiota in order to induce host immune response following IAV infection remain evasive. In this work, we developed a novel Maximal-Clique based Community Detection algorithm for Weighted undirected Networks (MCCD-WN) and compared its performance with other existing algorithms using three sets of benchmark networks. Moreover, we applied our algorithm to gut microbiome data derived from fecal samples of both healthy and IAV-infected pigs over a sequence of time-points. The results we obtained from the real-life IAV dataset unveil the role of the microbial families Ruminococcaceae, Lachnospiraceae, Spirochaetaceae and Prevotellaceae in the gut microbiome of the IAV-infected cohort. Furthermore, the additional integration of metaproteomic data enabled not only the identification of microbial biomarkers, but also the elucidation of their functional roles in protecting the host following IAV infection. Our network analysis reveals a fast recovery of the infected cohort after the second IAV infection and provides insights into crucial roles of Desulfovibrionaceae and Lactobacillaceae families in combating Influenza A Virus infection. Source code of the community detection algorithm can be downloaded from https://github.com/AniBhar84/MCCD-WN.
The full genome of a Methanomassiliicoccales strain, U3.2.1, was obtained from enrichment cultures of percolation fen peat soil under methanogenic conditions, with methanol and hydrogen as the electron acceptor and donor, respectively. Metagenomic assembly of combined long-read and short-read sequences resulted in a 1.51-Mbp circular genome.
Background: Methanogenic archaea represent a less investigated and likely underestimated part of the intestinal tract microbiome in swine.
Aims/Methods: This study aims to elucidate the archaeome structure and function in the porcine intestinal tract of healthy and H1N1 infected swine. We performed multi-omics analysis consisting of 16S rRNA gene profiling, metatranscriptomics and metaproteomics.
Results and discussion: We observed a significant increase from 0.48 to 4.50% of archaea in the intestinal tract microbiome along the ileum and colon, dominated by genera Methanobrevibacter and Methanosphaera. Furthermore, in feces of naïve and H1N1 infected swine, we observed significant but minor differences in the occurrence of archaeal phylotypes over the course of an infection experiment. Metatranscriptomic analysis of archaeal mRNAs revealed the major methanogenesis pathways of Methanobrevibacter and Methanosphaera to be hydrogenotrophic and methyl-reducing, respectively. Metaproteomics of archaeal peptides indicated some effects of the H1N1 infection on central metabolism of the gut archaea.
Conclusions/Take home message: Finally, this study provides the first multi-omics analysis and high-resolution insights into the structure and function of the porcine intestinal tract archaeome during a non-lethal Influenza A virus infection of the respiratory tract, demonstrating significant alterations in archaeal community composition and central metabolic functions.
The impact of summer drought on peat soil microbiome structure and function-A multi-proxy-comparison
(2022)
Different proxies for changes in structure and/or function of microbiomes have been developed, allowing assessing microbiome dynamics at multiple levels. However, the lack and differences in understanding the microbiome dynamics are due to the differences in the choice of proxies in different studies and the limitations of proxies themselves. Here, using both amplicon and metatranscriptomic sequencings, we compared four different proxies (16/18S rRNA genes, 16/18S rRNA transcripts, mRNA taxonomy and mRNA function) to reveal the impact of a severe summer drought in 2018 on prokaryotic and eukaryotic microbiome structures and functions in two rewetted fen peatlands in northern Germany. We found that both prokaryotic and eukaryotic microbiome compositions were significantly different between dry and wet months. Interestingly, mRNA proxies showed stronger and more significant impacts of drought for prokaryotes, while 18S rRNA transcript and mRNA taxonomy showed stronger drought impacts for eukaryotes. Accordingly, by comparing the accuracy of microbiome changes in predicting dry and wet months under different proxies, we found that mRNA proxies performed better for prokaryotes, while 18S rRNA transcript and mRNA taxonomy performed better for eukaryotes. In both cases, rRNA gene proxies showed much lower to the lowest accuracy, suggesting the drawback of DNA based approaches. To our knowledge, this is the first study comparing all these proxies to reveal the dynamics of both prokaryotic and eukaryotic microbiomes in soils. This study shows that microbiomes are sensitive to (extreme) weather changes in rewetted fens, and the associated microbial changes might contribute to ecological consequences.
Abstract
Aerated topsoils are important sinks for atmospheric methane (CH4) via oxidation by CH4‐oxidizing bacteria (MOB). However, intensified management of grasslands and forests may reduce the CH4 sink capacity of soils. We investigated the influence of grassland land‐use intensity (150 sites) and forest management type (149 sites) on potential atmospheric CH4 oxidation rates (PMORs) and the abundance and diversity of MOB (with qPCR) in topsoils of three temperate regions in Germany. PMORs measurements in microcosms under defined conditions yielded approximately twice as much CH4 oxidation in forest than in grassland soils. High land‐use intensity of grasslands had a negative effect on PMORs (−40%) in almost all regions and fertilization was the predominant factor of grassland land‐use intensity leading to PMOR reduction by 20%. In contrast, forest management did not affect PMORs in forest soils. Upland soil cluster (USC)‐α was the dominant group of MOBs in the forests. In contrast, USC‐γ was absent in more than half of the forest soils but present in almost all grassland soils. USC‐α abundance had a direct positive effect on PMOR in forest, while in grasslands USC‐α and USC‐γ abundance affected PMOR positively with a more pronounced contribution of USC‐γ than USC‐α. Soil bulk density negatively influenced PMOR in both forests and grasslands. We further found that the response of the PMORs to pH, soil texture, soil water holding capacity and organic carbon and nitrogen content differ between temperate forest and grassland soils. pH had no direct effects on PMOR, but indirect ones via the MOB abundances, showing a negative effect on USC‐α, and a positive on USC‐γ abundance. We conclude that reduction in grassland land‐use intensity and afforestation has the potential to increase the CH4 sink function of soils and that different parameters determine the microbial methane sink in forest and grassland soils.
Swine are regarded as promising biomedical models, but the dynamics of theirgastrointestinal microbiome have been much less investigated than that of humans or mice. The aimof this study was to establish an integrated multi-omics protocol to investigate the fecal microbiomeof healthy swine. To this end, a preparation and analysis protocol including integrated samplepreparation for meta-omics analyses of deep-frozen feces was developed. Subsequent data integrationlinked microbiome composition with function, and metabolic activity with protein inventories, i.e.,16S rRNA data and expressed proteins, and identified proteins with corresponding metabolites.16S rRNA gene amplicon and metaproteomics analyses revealed a fecal microbiome dominated byPrevotellaceae,Lactobacillaceae,Lachnospiraceae,RuminococcaceaeandClostridiaceae.Similar microbiomecompositions in feces and colon, but not ileum samples, were observed, showing that feces can serveas minimal-invasive proxy for porcine colon microbiomes. Longitudinal dynamics in composition,e.g., temporal decreased abundance ofLactobacillaceaeandStreptococcaceaeduring the experiment,were not reflected in microbiome function. Instead, metaproteomics and metabolomics showed arather stable functional state, as evident from short-chain fatty acids (SCFA) profiles and associatedmetaproteome functions, pointing towards functional redundancy among microbiome constituents.In conclusion, our pipeline generates congruent data from different omics approaches on the taxonomyand functionality of the intestinal microbiome of swine.
In temperate regions, climate warming alters temperature and precipitation regimes. During winter, a decline in insulating snow cover changes the soil environment, where especially frost exposure can have severe implications for soil microorganisms and subsequently for soil nutrient dynamics. Here, we investigated winter climate change responses in European beech forests soil microbiome. Nine study sites with each three treatments (snow exclusion, insolation, and ambient) were investigated. Long-term adaptation to average climate was explored by comparing across sites. Triplicated treatment plots were used to evaluate short-term (one single winter) responses. Community profiles of bacteria, archaea and fungi were created using amplicon sequencing. Correlations between the microbiome, vegetation and soil physicochemical properties were found. We identify core members of the forest-microbiome and link them to key processes, for example, mycorrhizal symbiont and specialized beech wood degraders (fungi) and nitrogen cycling (bacteria, archaea). For bacteria, the shift of the microbiome composition due to short-term soil temperature manipulations in winter was similar to the community differences observed between long-term relatively cold to warm conditions. The results suggest a strong link between the changes in the microbiomes and changes in environmental processes, for example, nitrogen dynamics, driven by variations in winter climate.