Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- - (1)
- Antibacterial efficacy (1)
- Antikörper (1)
- Bakteriämie (1)
- Cold atmospheric pressure plasma (1)
- Immunreaktion (1)
- Massenspektrometrie (1)
- Methicillin-resistant (1)
- Staphylococcus aureus (1)
- Systemic infection (1)
Institute
Publisher
Staphylococcus (S.) aureus besiedelt bei 30 % der gesunden Bevölkerung den Nasenraum, meist ohne Symptome zu verursachen (sog. Carrier). Die Bakterienspezies ist aber auch eine der häufigsten Ursachen für nosokomiale Infektionen mit zum Teil hoher Letalität, wie z. B. bei einer S. aureus-Sepsis. In den letzen Jahrzehnten haben sich multiresistente S. aureus-Isolate in und außerhalb der Krankenhäuser stark ausgebreitet. Dies lässt befürchten, dass eine erfolgreiche antibiotische Behandlung schwerer S. aureus-Infektionen in der Zukunft immer seltener möglich sein wird. Deshalb werden andere präventive und therapeutische Strategien wie Impfstoffe benötigt. Die Impfstoffentwicklung gestaltet sich jedoch schwierig. Zum einen ist die Variabilität der Spezies S. aureus sehr groß: Zwei Isolate können sich in bis zu 20 % ihres Genoms unterscheiden. Zum anderen ist auch die Immunantwort des Wirts sehr komplex. Die Mechanismen der angeborenen Immunabwehr sind bereits gut untersucht, das Zusammenspiel von S. aureus mit dem adaptiven Immunsystem dagegen weniger umfassend charakterisiert. Dabei ist gerade dies für die Vakzineentwicklung bedeutsam, denn jede erfolgreiche Vakzinierung beruht auf der Bildung eines Immungedächtnisses, der Kernkompetenz des adaptiven Immunsystems. Da sich die gegen S. aureus gerichtete adaptive Immunantwort von Individuum zu Individuum stark unterscheidet, ist die Entschlüsselung der zugrunde liegenden Mechanismen eine besondere Herausforderung. Die rasche Entwicklung von OMICs-Techniken ermöglicht nun erstmals eine umfassende Charakterisierung des Immunoms von S. aureus; der Gesamtheit der von B-Zellen (und Antikörpern) und T-Zellen erkannten bakteriellen Antigene. In dieser Arbeit sollten diese modernen Methoden eingesetzt werden, um einen Beitrag zum Verständnis der vielfältigen Interaktionen zwischen S. aureus und dem adaptiven Immunsystem zu leisten; mittelfristig soll dieses Projekt zur Entwicklung wirksamer Impfstoffe gegen S. aureus beitragen. Informativ erschien ein Vergleich der adaptiven Immunantwort bei S. aureus-Carriern und Patienten, weil er Aufschluss darüber verspricht, wie die Interaktion zwischen Erreger und Wirt in der Balance gehalten wird und was dieses Gleichgewicht stört. Weil die individuelle Antiköperantwort (IgG, IgA und IgM) in ihrer Komplexität und Variabilität erfasst werden sollte, wurde ein personalisierter Ansatz gewählt, d.h. mittels zweidimensionaler Immunoblots (2D-IB) wurde bei jedem S. aureus-Carrier oder Patienten die Antikörperantwort auf den eigenen kolonisierenden bzw. invasiven S. aureus-Stamm untersucht. Durch die Kombination mit massenspektrometrischen Analysen ließ sich das S. aureus-Immunom der Kolonisierung und der Bakteriämie herauskristallisieren. Um in der Zukunft auch S. aureus-spezifische T-Zellen charakterisieren zu können, wurde ein Verfahren für die Herstellung von humanen T-Zellbanken entwickelt, das die funktionelle Analyse von T-Lymphozyten auf Einzelzellebene ermöglicht.
Infections are often caused by pathobionts, endogenous bacteria that belong to the microbiota. Trauma and surgical intervention can allow bacteria to overcome host defences, ultimately leading to sepsis if left untreated. One of the main defence strategies of the immune system is the production of highly specific antibodies. In the present proof-of-concept study, plasma antibodies against 9 major pathogens were measured in sepsis patients, as an example of severe systemic infections. The binding of plasma antibodies to bacterial extracellular proteins was quantified using a semi-automated immunoblot assay. Comparison of the pathogen-specific antibody levels before and after infection showed an increase in plasma IgG in 20 out of 37 tested patients. This host-directed approach extended the results of pathogen-oriented microbiological and PCR diagnostics: a specific antibody response to additional bacteria was frequently observed, indicating unrecognised poly-microbial invasion. This might explain some cases of failed, seemingly targeted antibiotic treatment.
Previous studies on the antimicrobial activity of cold atmospheric pressure argon plasma showed varying effects against mecA<sup>+</sup> or mecA<sup>-</sup>Staphylococcus aureus strains. This observation may have important clinical and epidemiological implications. Here, the antibacterial activity of argon plasma was investigated against 78 genetically different S. aureus strains, stratified by mecA, luk-P, agr1-4, or the cell wall capsule polysaccharide types 5 and 8. kINPen09® served as the plasma source for all experiments. On agar plates, mecA<sup>+</sup>luk-P<sup>-</sup>S. aureus strains showed a decreased susceptibility against plasma compared to other S. aureus strains. This study underlines the high complexity of microbial defence against antimicrobial treatment and confirms a previously reported strain-dependent susceptibility of S. aureus to plasma treatment.