Refine
Document Type
- Article (9)
- Doctoral Thesis (1)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- - (7)
- Sepsis (3)
- CASP (2)
- CASP model (2)
- Morphologic changes (2)
- Sepsis score (2)
- Small animal MRI (2)
- kINPen (2)
- plasma medicine (2)
- B cell response (1)
Institute
Publisher
- Frontiers Media S.A. (3)
- MDPI (3)
- S. Karger AG (2)
- Public Library of Science (PLoS) (1)
Eine Maximalkomplikation der Sepsis stellt das Multiorganversagen dar, welches mit dem Auftreten einer disseminierten intravasalen Koagulopathie (DIC) und gleichzeitig einem letalen Endpunkt assoziiert ist. Es gibt bisher keine wirksame Therapie, zuletzt scheiterte die Anwendung von aktiviertem Protein C (APC) in klinischen Studien. Es fehlt an geeigneten Tiermodellen, um die Grundlagen der Pathophysiologie der DIC zu verstehen. Die Colon Ascendens Stent Peritonitis (CASP) stellt ein Modell der Schweren Sepsis dar. In der schweren Sepsis kommt es bei 37 % der Patienten zu einer DIC. Die klinischen Diagnosekriterien der DIC sollten im Mausmodell der CASP analysiert werden, um anschließend Untersuchungen zur Bedeutung des CC-Chemokinrezeptors 4 (CCR4) auf Thrombozyten für die DIC zu tätigen. Hierzu wurden zunächst durchflusszytometrische Untersuchungen zur Aktivierung des Thrombozyten in der Sepsis getätigt, welche zeigten, dass es zu einer vermehrten Ausschüttung von α-Granula im septischen Verlauf kam. Der Thrombozyt beteiligt sich anscheinend aktiv durch die Ausschüttung seines Sekretoms an den immunologischen Vorgängen einer Sepsis. Zusätzlich konnte mit molekularbiochemischen und proteinbiochemischen Methoden gezeigt werden, dass der Thrombozyt die Fähigkeit des Spleißens und der Proteinbiosynthese aus entwicklungsgeschichtlich jüngeren Zeiten konservierte. Im Modell der CASP zeigte die Wildtyp-Maus eine signifikant erniedrigte Thrombozytenzahl, erniedrigte Fibrinogenplasmaspiegel, Thrombozytenablagerung in der Leber und eine verlängerten extrinsische Gerinnungszeit. Diese Kriterien beschreiben das klinische Vorhandensein einer DIC. In den vergleichenden Untersuchungen des Ausmaßes der DIC der CCR4-defizienten Maus mit der Wildtyp-Maus konnten keine Unterschiede detektiert werden. Die CCR4-defiziente Maus hat einen Überlebensvorteil in der Sepsis trotz der klinischen Kriterien einer DIC. Sowohl der Fibrinogen-ELISA als auch die Immunfluoreszenzhistologien hatten methodisch bedingte Schwächen. Es bleibt jedoch festzuhalten, dass die vorgelegte Arbeit keinen negativen Einfluss des CCR4 auf die DIC detektieren konnte. Die Bedeutung der CCR4-vermittelten Aggregation des Thrombozyten für den Organismus bleibt unklar. Festzuhalten ist, dass das CASP-Modell geeignet ist um das klinisch-analytische Bild einer DIC in der Schweren Sepsis zu untersuchen. Vor dem Hintergrund mangelnder realitätsnaher Tiermodelle leistet dies einen Beitrag für weitere Forschung. Die Experimente zur mRNA-Regulation und Protein-Synthese bilden einen weiteren Baustein im Verständnis des Thrombozyten als kernlose Immunzelle. In ihrer Gesamtheit soll die vorgelegte Arbeit die Sichtweise auf Thrombozyten schärfen. Es handelt sich hierbei nicht um „Megakaryozytenzelltrümmer“, deren Funktion ausschließlich in der Blutgerinnung zu suchen ist. Vielmehr können Thrombozyten als eine Art Andenken an die Phylogenese des Immunsystems angesehen werden. Dreißigmillionen Jahre Entwicklungsgeschichte sind zwischen dem Amöbozyten und dem Thrombozyten vergangen und haben ein breites Rezeptor- und Mediatorrepertoire erhalten. Ob diese dem Organismus im Falle einer Sepsis nutzen oder eher schaden bleibt zu klären. Dass das Fehlen von Thrombozyten in bestimmten inflammatorischen Konstellationen einen Vorteil darstellt, ist auch für die abdominelle Sepsis untersucht. Die Depletion von Thrombozyten erzeugt eine 60 %-ige Verringerung des zellulären Ödems und des pulmonalen Schadens. In folgenden Untersuchungen soll das Modell der CASP genutzt werden um den Einfluss von Thrombozyten auf die DIC und das Überleben in der CASP zu untersuchen.
Oxidation-Specific Epitopes (OSEs) Dominate the B Cell Response in Murine Polymicrobial Sepsis
(2020)
In murine abdominal sepsis by colon ascendens stent peritonitis (CASP), a strong increase in serum IgM and IgG antibodies was observed, which reached maximum values 14 days following sepsis induction. The specificity of this antibody response was studied in serum and at the single cell level using a broad panel of bacterial, sepsis-unrelated as well as self-antigens. Whereas an antibacterial IgM/IgG response was rarely observed, studies at the single-cell level revealed that IgM antibodies, in particular, were largely polyreactive. Interestingly, at least 16% of the IgM mAbs and 20% of the IgG mAbs derived from post-septic mice showed specificity for oxidation-specific epitopes (OSEs), which are known targets of the innate/adaptive immune response. This identifies those self-antigens as the main target of B cell responses in sepsis.
Background: Magnetic resonance imaging (MRI) techniques are rarely used in the context of abdominal sepsis and in sepsis research. This study investigates the impact of MRI for monitoring septic peritonitis in an animal model (colon ascendens stent-induced peritonitis, CASP). The CASP model closely mimics that of human disease and is highly standardized. The most frequently employed readout parameter in mouse CASP studies is prolonged or decreased rate of survival. Monitoring the progression of peritonitis via MRI could provide a helpful tool in the evaluation of severity. The use of alternative readout systems could very well reduce the number of research animals. Perspectively, clinical improvement after certain treatment could be classified. Methods: This study describes for the first time MRI findings following the induction of septic peritonitis in mice using the CASP model. Two sublethal groups of mice with septic peritonitis were investigated. Each had received one of two differing stent diameters in order to control the leakage of feces into the abdominal cavity. Each mouse served as its own control. Imaging and analyses were performed blinded. Gut diameters, stomach volume, abdominal organ wall diameters, and volume of the adrenal glands were measured. Serum corticosterone levels were detected using ELISA. Serum IL-6, TNF-α, IL-1β, and IL-10 levels were screened by cytometric bead array. Statistical analysis was performed using the Mann-Whitney U test for nonparametric probes and the Kruskal-Wallis and t tests. Results: Using a 7-tesla MRI scanner 24 and 48 h after induction of septic peritonitis, interenteric fluid, organ swelling of spleen and adrenal glands, as well as dilatation of the stomach were compared to nonseptic conditions. Swelling of adrenal glands resulted in an increased serum corticosterone level. In addition, the wall of the intestine bowel was thickened. Based upon these findings, an MRI score (MRI sepsis score, MSS) for abdominal sepsis in mice was established. Reduced stent sizes led to reduced severity of the abdominal sepsis, which could be reproduced in the MSS, which is described here for the first time. Conclusions: Intraabdominal variations during septic peritonitis are detectable by MRI techniques. MRI methods should become a more important tool for the evaluation of abdominal peritonitis. MSS could provide an interesting tool for the evaluation of therapeutic strategies.
Background: Magnetic resonance imaging (MRI) techniques are rarely used in the context of abdominal sepsis and in sepsis research. This study investigates the impact of MRI for monitoring septic peritonitis in an animal model (colon ascendens stent-induced peritonitis, CASP). The CASP model closely mimics that of human disease and is highly standardized. The most frequently employed readout parameter in mouse CASP studies is prolonged or decreased rate of survival. Monitoring the progression of peritonitis via MRI could provide a helpful tool in the evaluation of severity. The use of alternative readout systems could very well reduce the number of research animals. Perspectively, clinical improvement after certain treatment could be classified. Methods: This study describes for the first time MRI findings following the induction of septic peritonitis in mice using the CASP model. Two sublethal groups of mice with septic peritonitis were investigated. Each had received one of two differing stent diameters in order to control the leakage of feces into the abdominal cavity. Each mouse served as its own control. Imaging and analyses were performed blinded. Gut diameters, stomach volume, abdominal organ wall diameters, and volume of the adrenal glands were measured. Serum corticosterone levels were detected using ELISA. Serum IL-6, TNF-α, IL-1β, and IL-10 levels were screened by cytometric bead array. Statistical analysis was performed using the Mann-Whitney U test for nonparametric probes and the Kruskal-Wallis and t tests. Results: Using a 7-tesla MRI scanner 24 and 48 h after induction of septic peritonitis, interenteric fluid, organ swelling of spleen and adrenal glands, as well as dilatation of the stomach were compared to nonseptic conditions. Swelling of adrenal glands resulted in an increased serum corticosterone level. In addition, the wall of the intestine bowel was thickened. Based upon these findings, an MRI score (MRI sepsis score, MSS) for abdominal sepsis in mice was established. Reduced stent sizes led to reduced severity of the abdominal sepsis, which could be reproduced in the MSS, which is described here for the first time. Conclusions: Intraabdominal variations during septic peritonitis are detectable by MRI techniques. MRI methods should become a more important tool for the evaluation of abdominal peritonitis. MSS could provide an interesting tool for the evaluation of therapeutic strategies.
Although antigen-specific priming of antibody responses is impaired during sepsis, there is nevertheless a strong increase in IgM and IgG serum concentrations. Using colon ascendens stent peritonitis (CASP), a mouse model of polymicrobial abdominal sepsis, we observed substantial increases in IgM as well as IgG of all subclasses, starting at day 3 and peaking 2 weeks after sepsis induction. The dominant source of antibody-secreting cells was by far the spleen, with a minor contribution of the mesenteric lymph nodes. Remarkably, sepsis induction in splenectomized mice did not change the dynamics of the serum IgM/IgG reaction, indicating that the marginal zone B cells, which almost exclusively reside in the spleen, are dispensable in such a setting. Hence, in systemic bacterial infection, the function of the spleen as dominant niche of antibody-producing cells can be compensated by extra-splenic B cell populations as well as other lymphoid organs. Depletion of CD4+ T cells did not affect the IgM response, while it impaired IgG generation of all subclasses with the exception of IgG3. Taken together, our data demonstrate that the robust class-switched antibody response in sepsis encompasses both T cell-dependent and -independent components.
Objectives: To investigate the co-occurrence of 4 behavioral health risk factors (BHRFs), namely tobacco smoking, alcohol at-risk drinking, physical inactivity and unhealthy diet and their association with sick days prior to hospitalization in general hospital patients.
Methods: Over 10 weeks (11/2020-04/2021), all 18-64-year-old patients admitted to internal medicine, general and trauma surgery, and otorhinolaryngology wards of a tertiary care hospital were systematically approached. Among 355 eligible patients, 278 (78.3%) participated, and 256 (72.1%) were analyzed. Three BHRF sum scores were determined, including current tobacco smoking, alcohol use, physical inactivity and 1 of 3 indicators of unhealthy diet. Associations between BHRF sum scores and sick days in the past 6 months were analyzed using multivariate zero-inflated negative binomial regressions.
Results: Sixty-two percent reported multiple BHRFs (≥2). The BHRF sum score was related to the number of sick days if any (p = 0.009) with insufficient vegetable and fruit intake as diet indicator.
Conclusion: The majority of patients disclosed multiple BHRFs. These were associated with sick days prior to admission. The findings support the need to implement interventions targeting multiple BHRFs in general hospitals.
Cold medical gas plasmas are under pre-clinical investigation concerning their hemostatic activity and could be applied for intra-operative bleeding control in the future. The technological leap innovation was their generation at body temperature, thereby causing no thermal harm to the tissue and ensuring tissue integrity. This directly contrasts with current techniques such as electrocautery, which induces hemostasis by carbonizing the tissue using a heated electrode. However, the necrotized tissue is prone to fall, raising the risk of post-operative complications such as secondary bleedings or infection. In recent years, various studies have reported on the ability of medical gas plasmas to induce blood coagulation, including several suggestions concerning their mode of action. As non-invasive and gentle hemostatic agents, medical gas plasmas could be particularly eligible for vulnerable tissues, e.g., colorectal surgery and neurosurgery. Further, their usage could be beneficial regarding the prevention of post-operative bleedings due to the absence or sloughing of eschar. However, no clinical trials or individual healing attempts for medical gas plasmas have been reported to pave the way for clinical approvement until now, despite promising results in experimental animal models. In this light, the present mini-review aims to emphasize the potential of medical gas plasmas to serve as a hemostatic agent in clinical procedures. Providing a detailed overview of the current state of knowledge, feasible application fields are discussed, and possible obstacles are addressed.
Pancreatic cancer is known for its tumor microenvironment (TME), which is rich in stromal and immune cells supporting cancer growth and therapy resistance. In particular, tumor-associated macrophages (TAMs) are known for their angiogenesis- and metastasis-promoting properties, which lead to the failure of conventional therapies for pancreatic cancer. Hence, treatment options targeting TAMs are needed. The C-C chemokine receptor type 4 (CCR4) is critical for immune cell recruitment into the TME, and in this paper we explore the effects of its genetic or immunotherapeutic blockade in pancreatic-cancer-bearing mice. Murine PDA6606 pancreatic cancer cells and murine peritoneal macrophages were used for in vitro migration assays. In vivo, a syngeneic, orthotropic pancreatic cancer model was established. Tumor growth and survival were monitored under prophylactic and therapeutic application of a CCR4 antagonist (AF-399/420/18025) in wildtype (CCR4wt) and CCR4-knockout (CCR4−/−) mice. Immune infiltration was monitored in tumor tissue sections and via flow cytometry of lysed tumors. PDA6606 cells induced less migration in CCR4−/− than in CCR4wt macrophages in vitro. Pancreatic TAM infiltration was higher, and survival was reduced in CCR4wt mice compared to CCR4−/− mice. Antagonizing CCR4 in wildtype mice revealed similar results as in CCR4−/− mice without antagonization. Prophylactic CCR4 antagonist application in wildtype mice was more efficient than therapeutic antagonization. CCR4 seems to be critically involved in TAM generation and tumor progression in pancreatic cancer. CCR4 blockade may help prolong the relapse-free period after curative surgery in pancreatic cancer and improve prognosis.
Background
Disseminated Intravascular Coagulation (DIC) is a life-threatening complication of sepsis. In surgical ICUs, DIC is frequently caused by abdominal sepsis, and the disarranged coagulation and complications often lead to death. The severity of sepsis is associated with a higher DIC score according to the parameters proposed by the International Society of Hemostasis and Thrombosis (ISTH) in 2001: platelet count, bleeding time (Quick), D-dimer, and fibrinogen. One problem in studying DIC is finding an adequate animal model that reflects the clinical situation of polymicrobial overwhelming infection.
Aims and methods
We investigated whether a well-established polymicrobial sepsis model of colon ascendens stent peritonitis (CASP) is suited to investigate the complexity of DIC. For this purpose, CASP-operated mice were examined 20 h after the operation with regard to coagulation parameters using cell counts, bleeding times, rotational thromboelastometry (ROTEM), ELISAs for D-dimer and fibrinogen, and platelet accumulation in affected organs via immunohistochemistry to see if the mice develop a coagulation disorder that meets the definition of DIC proposed by the ISTH 2001 consensus conference.
Results
Herein, we showed that the CASP model is an all-encompassing animal model to analyze the complexity of systemic DIC in murine abdominal sepsis. There is highly reproducible thrombocytopenia, a significant prolongation of the bleeding time, and a loss of fibrinogen in plasma. We also observed microvascular thrombosis due to platelet accumulation in the microcirculation of the liver.
Conclusion
The CASP model seems superior to other artificial models, e.g., injecting substances, for inducing DIC. CASP is one of the best true-to-life models for analyzing the complexity of disseminated intravascular coagulation in polymicrobial sepsis.