Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- - (4)
- Baltic Sea (2)
- Europe (2)
- climate change (2)
- microsite (2)
- tree-ring width (2)
- Blue Intensity (1)
- Dünen (1)
- Himalayan Silver Fir (<i>Abies spectabilis</i>), Nepal Himalaya (1)
- Kiefer (1)
Publisher
- MDPI (2)
- Frontiers Media S.A. (1)
- Wiley (1)
Climate Change-Induced Shift of Tree Growth Sensitivity at a Central Himalayan Treeline Ecotone
(2018)
Coastal dunes near the Baltic Sea are often stabilized by Scots pine forests and are characterized by a mild climate. These ecosystems are affected by water shortages and might be influenced by climate extremes. Considering future climate change, utilizing tree rings could help assess the role of climate extremes on coastal forest growth. We used superposed epoch analysis to study Scots pine responses to droughts and cold winters, with focus on frequency, timing, and duration. We measured ring widths (RW) and latewood blue intensity (LBI) on samples extracted from trees growing at dune ridge and bottom microsites at the south Baltic Sea. At the regional scale, we observed some similarities in tree responses to both extremes between RW and LBI within the same microsite type and region. At the local scale, RW and LBI were more frequently influenced by cold winters than droughts. RW and LBI from dune ridges were more frequently influenced by droughts than RW and LBI from dune bottoms. LBI from both microsites was more often influenced by droughts than RW. RW and LBI from both microsites were similarly often influenced by cold winters. At both scales, the response time of RW and LBI after droughts predominantly lagged by one year, while cold winters were recorded in the same year. The typical duration of growth reductions after both extremes was one year for both RW and LBI. Our study indicates that Scots pine from the Baltic Sea region is sensitive to climate extremes, especially cold winters.
Forests are ecologically important ecosystems, for example, they absorb CO2 from the
atmosphere, mitigate climate change, and constitute habitats for the majority of terrestrial
flora and fauna. Currently, due to increasing human pressure, forest ecosystems are
increasingly subjected to changing environmental conditions, which may alter forest growth
to varying degrees. However, how exactly different tree species will respond to climate
change remains uncertain and requires further comprehensive studies performed at different
spatial scales and using various tree-ring parameters.
This dissertation aims to advance the knowledge about tree-ring densitometry and
tree responses to climate variability and extremes at different spatial scales, using various
tree species. More specifically, the following aims are pursued: (i) to obtain and compare
wood density data using different techniques, and to assess variability among laboratories
(Chapter I). (ii) To investigate microsite effects on local and regional Scots pine (Pinus
sylvestris L.) responses to climate variability (Chapter II) and extremes (Chapter III),
using ring width (RW) and latewood blue intensity (LBI) parameters. (iii) To give a general
site- and regional-scales overview of Scots pine, pedunculate oak (Quercus robur L.), and
European beach (Fagus sylvatica L.) RW responses to climate variability (Chapter IV). (iv)
To discuss the challenges which may result from compiling tree ring records from different
(micro)sites into large-scale networks. The study area comprises nine coastal dune sites, each
represented by two contrasting microsites: dune ridge and bottom (Chapters II and III), and
310 different sites within the south Baltic Sea lowlands (Chapter IV).
The dissertation confirms that sample processing and wood density measuring are
very important steps, which, if not performed carefully, may result in biases in growth trends,
climate-growth responses, and climate reconstructions. The performed experiment proved
that the mean levels of different wood density-related parameters are never comparable due
to different measurement resolutions between various techniques and laboratories. Further,
the study revealed substantial biases using data measured from rings of varying width due
to resolution issues, where resolution itself and wood density are lowered for narrow rings
compared to wide rings (Chapter I).
The (micro)site-specific investigation showed that, depending on the species,
different climate variables (temperature, precipitation, or drought) constitute important
factors driving tree growth across investigated locations (Chapters II and IV). However,
there is evidence that the strength and/or direction of climate-growth responses differ(s)
between microsite types (Chapter II) and across sites (Chapter IV). Moreover, climategrowth
responses are non-stationary over time regardless of the tree species and tree-ring
parameter used in the analysis (Chapters II and IV). There are also differences in RW and
LBI responses to extreme events at dune ridge and bottom microsites (Chapter III).
The regional-scale investigations revealed that climate-growth responses (strength
and non-stationarity) are quite similar to those observed at the local scale. However,
compiling RW or LBI measurements into regional networks to study tree responses to
extreme events led to weakened signals (Chapter III).
The findings presented in Chapters II and IV suggest that the strength, direction,
and non-stationary responses are very likely caused by several climatic and non-climatic
factors. The mild climate in the south Baltic Sea region presumably does not constitute a
leading limiting growth factor, especially for Scots pine, whose distribution extends from
southern to northern Europe. Thus, the observed climate-growth responses are usually of
weak to moderate strength. In contrast, for other species reaching their distribution limit at
the Baltic coast, the climatic signal can be very strong. However, the observed findings also
result from the effects of microsite conditions, and potentially other factors (e.g.,
management, stand dynamic), which all together alter the physiological response of the tree
at a local scale. Although climate at the south Baltic Sea coast is mild, extreme climate events
may occur and affect tree growth. As demonstrated (Chapter III), extreme climate events
affected tree growth across dune sites, however, to varying degrees. The prominent
differences in tree responses to extreme climate events were significant at the local scale but
averaged out at the regional scale. This is very likely associated with observed microsite
differences, where each microsite experiences different drivers and dynamics of extreme
growth reductions.
This dissertation helped to demonstrate that integrating local tree-ring records into
regional networks involves a series of challenges, which arise at different stages of research.
In fact, not all possible challenges have been discussed in this dissertation. However, it can
be summarized that several steps performed first at the local scale are very important for the
quality and certainty of climate-growth responses, tracking tree recovery after extreme
events, and potential climate reconstructions at the larger scale. Among them, identification
of microsite conditions, sample preparation, and measurement, examination of growth
patterns and trends, and identification of a common limiting growth factor are very
important. Otherwise, the compilation of various tree-ring data into a single dataset could
lead to over- or underestimation of the results and biased interpretations.
Coastal sand dunes near the Baltic Sea are a dynamic environment marking the boundary between land and sea and oftentimes covered by Scots pine (Pinus sylvestris L.) forests. Complex climate-environmental interactions characterize these ecosystems and largely determine the productivity and state of these coastal forests. In the face of future climate change, understanding interactions between coastal tree growth and climate variability is important to promote sustainable coastal forests. In this study, we assessed the effect of microsite conditions on tree growth and the temporal and spatial variability of the relationship between climate and Scots pine growth at nine coastal sand dune sites located around the south Baltic Sea. At each site, we studied the growth of Scots pine growing at microsites located at the ridge and bottom of a dune and built a network of 18 ring-width and 18 latewood blue intensity chronologies. Across this network, we found that microsite has a minor influence on ring-width variability, basal area increment, latewood blue intensity, and climate sensitivity. However, at the local scale, microsite effects turned out to be important for growth and climate sensitivity at some sites. Correlation analysis indicated that the strength and direction of climate-growth responses for the ring-width and blue intensity chronologies were similar for climate variables over the 1903–2016 period. A strong and positive relationship between ring-width and latewood blue intensity chronologies with winter-spring temperature was detected at local and regional scales. We identified a relatively strong, positive influence of winter-spring/summer moisture availability on both tree-ring proxies. When climate-growth responses between two intervals (1903–1959, 1960–2016) were compared, the strength of growth responses to temperature and moisture availability for both proxies varied. More specifically, for the ring-width network, we identified decreasing temperature-growth responses, which is in contrast to the latewood blue intensity network, where we documented decreasing and increasing temperature-growth relationships in the north and south respectively. We conclude that coastal Scots pine forests are primarily limited by winter-spring temperature and winter-spring/summer drought despite differing microsite conditions. We detected some spatial and temporal variability in climate-growth relationships that warrant further investigation.
Abstract
The role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree‐ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate–growth responses for the 1943–1972 and 1973–2002 periods and characterizing site‐level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad‐scale climate–growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea.