Refine
Document Type
- Article (6)
- Doctoral Thesis (1)
Is part of the Bibliography
- no (7)
Keywords
- - (4)
- Allogeneic stem cell transplantation (2)
- BK virus (2)
- Haemorrhagic cystitis (2)
- Immunoglobulin G (2)
- Immunoglobulin M (2)
- Methylene blue (2)
- Pathogen inactivation (2)
- Adenoviren (1)
- Adult allogeneic stem cell transplantation (1)
Institute
Publisher
- S. Karger AG (4)
- Karger (1)
- Nature (1)
Infektionen des Zentralnervensystems (ZNS) können durch unterschiedliche Erreger verursacht werden, wobei Viren das Hauptpotential bilden. Bei der Abklärung der Ätiologie von Infektionen des ZNS nimmt die Labordiagnostik eine zentrale Rolle ein. Die Kenntnis des ätiologischen Agents ist von hoher prognostischer und therapeutischer Relevanz und für die Optimierung des Patientenmanagements bedeutend. Es wurden molekularbiologische Methoden zur Identifizierung und Charakterisierung ZNS-assoziierter Viren etabliert und zur Gewinnung aktueller Prävalenzdaten eingesetzt. Enteroviren (EV) waren mit 21,8% das häufigste Pathogen, gefolgt von Adenoviren. HSV und VZV spielten nur eine untergeordnete Rolle. Eine Bedeutung von West Nil-Virus bei ZNS-Infektionen in der Region Vorpommern konnte ausgeschlossen werden. Die genotypische Charakterisierung zirkulierender Stämme zeigte für EV Cluster mit hoher Homologie zur Gruppe der Coxsackie B-Viren. Weiterhin wurden Vertreter von Coxsackievirus A und von Echovirus identifiziert. Isolierte EV-Stämme wiesen gegenüber Pleconaril eine hohe Empfindlichkeit auf. Ein unerwartet hoher Anteil wurde für Adenoviren gefunden. Die identifizierten Serotypen waren ADV-2, ADV-5 und ADV-41. Untersuchungen zum Proteinprofil EV-infizierter Zellen zeigten signifikante Veränderungen in der Expression für Proteine des Zytoskeletts, für Bestandteile von metabolischen Prozessen und für Proteine, die in Signal- und Transportprozesse sowie die Stress-Abwehr involviert sind und bieten Ansätze für die Entwicklung neuer therapeutischer Strategien.
BK polyomavirus-associated haemorrhagic cystitis (BKHC) is a complication after allogeneic stem cell transplantation, which can occur in 5–60% of the cases. BK viruria alone can also occur in up to 100%. BKHC can lead to severe morbidity in stem cell-transplanted patients, but data about this disease is limited. Consequently, we conducted a prospective unicentric non-interventional trial on BKHC as well as BK viruria after first adult allogeneic stem cell transplantation with a follow-up time of 1 year after inpatient treatment. Between November 2013 and December 2015, we were able to include 40 adult patients with a mean age of 52.8 years. Twenty-seven (67.5%) of these patients were male and 13 (32.5%) were female. Acute myeloid leukaemia was the most frequent underlying disease (n = 15; 37.5%). Only 1 patient developed BKHC during inpatient treatment (n = 1; 2.5%), but BK viruria was frequent (n = 11; 27.5%) during inpatient treatment as well as in the follow-up time (n = 14; 35%). Interestingly, BK viruria was significantly associated with mucositis (p = 0.038) and number of transfused platelet concentrates (p = 0.001). This unexpected association will be discussed and needs further investigation.
BK polyomavirus-associated haemorrhagic cystitis (BKHC) is a complication after allogeneic stem cell transplantation, which can occur in 5–60% of the cases. BK viruria alone can also occur in up to 100%. BKHC can lead to severe morbidity in stem cell-transplanted patients, but data about this disease is limited. Consequently, we conducted a prospective unicentric non-interventional trial on BKHC as well as BK viruria after first adult allogeneic stem cell transplantation with a follow-up time of 1 year after inpatient treatment. Between November 2013 and December 2015, we were able to include 40 adult patients with a mean age of 52.8 years. Twenty-seven (67.5%) of these patients were male and 13 (32.5%) were female. Acute myeloid leukaemia was the most frequent underlying disease (n = 15; 37.5%). Only 1 patient developed BKHC during inpatient treatment (n = 1; 2.5%), but BK viruria was frequent (n = 11; 27.5%) during inpatient treatment as well as in the follow-up time (n = 14; 35%). Interestingly, BK viruria was significantly associated with mucositis (p = 0.038) and number of transfused platelet concentrates (p = 0.001). This unexpected association will be discussed and needs further investigation.
Background: The association of polyomaviruses BK and JC with other opportunistic infections and graft-versus-host disease (GvHD) in allogeneic stem cell transplantation is controversially discussed. Methods: We conducted a retrospective study of 64 adult patients who received their first allogeneic stem cell transplantation between March 2010 and December 2014; the follow-up time was 2 years. Results: Acute leukemia was the most frequent underlying disease (45.3%), and conditioning included myeloablative (67.2%) and nonmyeloablative protocols (32.8%). All patients received 10 mg of alemtuzumab on day -2 (20 mg in case of mismatch) as GvHD prophylaxis. Twenty-seven patients (41.5%) developed cytomegalovirus (CMV) reactivation. BKPyV-associated hemorrhagic cystitis was diagnosed in 10 patients (15.6%). Other opportunistic infections caused by viruses or protozoa occurred rarely (<10%). There was no association of BKPyV or JCPyV with CMV reactivation, Epstein-Barr virus reactivation, human herpes virus 6, or parvovirus B19 infection requiring treatment. There was a significant correlation of BKPyV-associated hemorrhagic cystitis with toxoplasmosis (p = 0.013). Additionally, there was a significant link of simultaneous BKPyV and JCPyV viruria with toxoplasmosis (p = 0.047). BKPyV and JCPyV were not associated with GvHD, relapse, or death. Conclusion: We found no association of BKPyV or JCPyV with viral infections or GvHD. Only the correlation of both polyomaviruses with toxoplasmosis was significant. This is a novel and interesting finding.
ntroduction: In the light of the ongoing SARS-CoV-2 pandemic, convalescent plasma is a treatment option for COVID-19. In contrast to usual therapeutic plasma, the therapeutic agents of convalescent plasma do not represent clotting factor activities, but immunoglobulins. Quarantine storage of convalescent plasma as a measure to reduce the risk of pathogen transmission is not feasible. Therefore, pathogen inactivation (e.g., Theraflex®-MB, Macopharma, Mouvaux, France) is an attractive option. Data on the impact of pathogen inactivation by methylene blue (MB) treatment on antibody integrity are sparse. Methods: Antigen-specific binding capacity was tested before and after MB treatment of plasma (n = 10). IgG and IgM isoagglutinin titers were tested by agglutination in increasing dilutions. Furthermore, the binding of anti-EBV and anti-tetanus toxin IgG to their specific antigens was assessed by ELISA, and IgG binding to Fc receptors was assessed by flow cytometry using THP-1 cells expressing FcRI and FcRII. Results: There was no significant difference in the isoagglutinin titers, the antigen binding capacity of anti-EBV and anti-tetanus toxin IgG, as well as the Fc receptor binding capacity before and after MB treatment of plasma. Conclusion: MB treatment of plasma does not inhibit the binding capacity of IgM and IgG to their epitopes, or the Fc receptor interaction of IgG. Based on these results, MB treatment of convalescent plasma is appropriate to reduce the risk of pathogen transmission if quarantine storage is omitted.
Helicobacter (H.) pylori is the most important cause for peptic ulcer disease and a risk factor for gastric carcinoma. How colonization with H. pylori affects the intestinal microbiota composition in humans is unknown. We investigated the association of H. pylori infection with intestinal microbiota composition in the population-based cohort Study-of-Health-in-pomerania (SHip)-tRenD. Anti-H. pylori serology and H. pylori stool antigen tests were used to determine the H. pylori infection status. the fecal microbiota composition of 212 H. pylori positive subjects and 212 matched negative control individuals was assessed using 16S rRNA gene sequencing. H. pylori infection was found to be significantly associated with fecal microbiota alterations and a general increase in fecal microbial diversity. in infected individuals, the H. pylori stool antigen load determined a larger portion of the microbial variation than age or sex. the highest H. pylori stool antigen loads were associated with a putatively harmful microbiota composition. this study demonstrates profound alterations in human fecal microbiota of H. pylori infected individuals. While the increased microbiota diversity associated with H. pylori infection as well as changes in abundance of specific genera could be considered to be beneficial, others may be associated with adverse health effects, reflecting the complex relationship between H. pylori and its human host.
Introduction: In the light of the ongoing SARS-CoV-2 pandemic, convalescent plasma is a treatment option for COVID-19. In contrast to usual therapeutic plasma, the therapeutic agents of convalescent plasma do not represent clotting factor activities, but immunoglobulins. Quarantine storage of convalescent plasma as a measure to reduce the risk of pathogen transmission is not feasible. Therefore, pathogen inactivation (e.g., Theraflex®-MB, Macopharma, Mouvaux, France) is an attractive option. Data on the impact of pathogen inactivation by methylene blue (MB) treatment on antibody integrity are sparse. Methods: Antigen-specific binding capacity was tested before and after MB treatment of plasma (n = 10). IgG and IgM isoagglutinin titers were tested by agglutination in increasing dilutions. Furthermore, the binding of anti-EBV and anti-tetanus toxin IgG to their specific antigens was assessed by ELISA, and IgG binding to Fc receptors was assessed by flow cytometry using THP-1 cells expressing FcRI and FcRII. Results: There was no significant difference in the isoagglutinin titers, the antigen binding capacity of anti-EBV and anti-tetanus toxin IgG, as well as the Fc receptor binding capacity before and after MB treatment of plasma. Conclusion: MB treatment of plasma does not inhibit the binding capacity of IgM and IgG to their epitopes, or the Fc receptor interaction of IgG. Based on these results, MB treatment of convalescent plasma is appropriate to reduce the risk of pathogen transmission if quarantine storage is omitted.