Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- - (2)
- DOT-MGA (1)
- MALDI-TOF MS (1)
- MALDI-TOF mass spectrometry (1)
- MRSA (1)
- antimicrobial susceptibility testing (1)
- blood culture (1)
- direct-on-target microdroplet growth assay (1)
- optochin susceptibility testing (1)
- rapid test (1)
Publisher
- Frontiers Media S.A. (1)
- MDPI (1)
Matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry (MALDI-TOF MS)-based direct-on-target microdroplet growth assay (DOT-MGA) was recently described as a novel method of phenotypic antimicrobial susceptibility testing (AST). Here, we developed the application of MALDI-TOF MS-based DOT-MGA for Gram-positive bacteria including AST from agar cultures and directly from positive blood cultures (BCs) using the detection of methicillin resistance as example. Consecutively collected, a total of 14 methicillin-resistant Staphylococcus aureus (MRSA) and 14 methicillin-susceptible S. aureus (MSSA) clinical isolates were included. Furthermore, a collection of MRSA challenge strains comprising different SCCmec types, mec genes, and spa types was tested. Blood samples were spiked with MRSA and MSSA and positive BC broth processed by three different methods: serial dilution of BC broth, lysis/centrifugation, and differential centrifugation. Processed BC broth was directly used for rapid AST using DOT-MGA. Droplets of 6 μl with and without cefoxitin at the EUCAST breakpoint concentration were spotted in triplicates onto the surface of a MALDI target. Targets were incubated in a humidity chamber, followed by medium removal and on-target protein extraction with formic acid before adding matrix with an internal standard as a quality control (QC). Spectra were acquired and evaluated using MALDI Biotyper software. First, tests were considered as valid, if the growth control achieved an identification score of ≥1.7. For valid tests, same score criterion was used for resistant isolates when incubated with cefoxitin. An identification score <1.7 after incubation with cefoxitin defined susceptible isolates. On-target protein extraction using formic acid considerably improved detection of methicillin resistance in S. aureus and DOT-MGA showed feasible results for AST from agar cultures after 4 h incubation time. Comparing the different processing methods of positive BC broth, lysis/centrifugation method with a final dilution step 10–1 of the 0.5 McFarland suspension resulted in best test performance after 4 h incubation time. Overall, 96.4% test validity, 100% sensitivity, and 100% specificity were achieved for detection of methicillin resistance in clinical isolates. All strains of the MRSA challenge collection were successfully tested as methicillin-resistant. This first study on Gram-positive organisms showed feasibility and accuracy of MALDI-TOF MS-based DOT-MGA for rapid AST of S. aureus from agar cultures and directly from positive BCs.
Discrimination of Streptococcus pneumoniae from other Streptococcus mitis group (SMG) species is still challenging but very important due to their different pathogenic potential. In this study, we aimed to develop a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based optochin susceptibility test with an objective read-out. Optimal test performance was established and evaluated by testing consecutively collected respiratory isolates. Optochin in different concentrations as a potential breakpoint concentration was added to a standardized inoculum. Droplets of 6 µL with optochin and, as growth control, without optochin were spotted onto a MALDI target. Targets were incubated in a humidity chamber, followed by medium removal and on-target protein extraction with formic acid before adding matrix with an internal standard. Spectra were acquired, and results were interpreted as S. pneumoniae in the case of optochin susceptibility (no growth), or as non-S. pneumoniae in the case of optochin non-susceptibility (growth). Highest test accuracy was achieved after 20 h incubation time (95.7%). Rapid testing after 12 h incubation time (optochin breakpoint 2 µg/mL; correct classification 100%, validity 62.5%) requires improvement by optimization of assay conditions. The feasibility of the MALDI-TOF MS-based optochin susceptibility test was demonstrated in this proof-of-principle study; however, confirmation and further improvements are warranted.