Refine
Year of publication
- 2020 (2)
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Clp proteolysis (2)
- McsB arginine kinase (2)
- arginine phosphorylation (2)
- - (1)
- Bacillus subtilis (1)
- GudB (1)
- MgsR (1)
- MgsR activity (1)
- MgsR degradation (1)
- stress response (1)
Institute
Publisher
Die McsB Argininkinase spielt in grampositiven Bakterien wie Bazillen, Staphylokokken und Listerien durch die Phosphorylierung von Guanidinogruppen eine gesonderte Rolle innerhalb der Familie der Kinasen. Insbesondere während der bakteriellen Stressadaptation scheint diese Art der posttranslationalen Proteinmodifikation von großer Bedeutung zu sein. Um die Funktionsweise der McsB Kinasefunktion in Verbindung mit dessen McsA Modulatorprotein besser verstehen zu können, wurden konservierte Arginine gegen Lysin substituiert. Auf diese Weise konnten entscheidende intramolekulare Positionen identifiziert werden, die für die Ausbildung der Autokinase- bzw. Phospho-Transferase Aktivität von Bedeutung sind. Diese konnten darüber hinaus in Einklang mit der McsB Struktur (Suskiewicz et al., 2019) gebracht werden.
Eines der Zielproteine für die McsB vermittelte Argininphosphorylierung (Arg-P) ist dabei der CtsR Regulator, welcher die Genexpression der Clp-Maschinerie in Bacillus subtilis reprimiert. Mit Hilfe globaler Transkriptomanalysen war es möglich, neben den bereits etablierten Zielgenen auch eine Art fine-tuning Regulation des MhqR Regulons aufzuzeigen.
Zwei weitere Proteine, die durch McsB vermittelte Arg-Ps beeinflusst werden, sind der Modulator der generellen Stressantwort, MgsR, und die intrinsisch inaktive Glutamat-Dehydrogenase GudB. Insbesondere GudB fällt durch die Identifikation von 15 Phospho-sites auf, wohingegen lediglich zwei Arg-P Bindungsstellen für MgsR nachgewiesen werden konnten (Elsholz et al., 2012; Schmidt et al., 2014; Trentini et al., 2016). Dennoch ist die GudB Stabilität nur geringfügig durch die McsB Kinasefunktion beeinflusst, wohingegen die MgsR Degradation entscheidend durch Arg-Ps beeinflusst scheint. Durch die Substitution der Arginine von MgsR gegen Glutamat wurde eine Art Phospho-Mimikry integriert. So konnten die Auswirkungen auf Regulatoraktivität und Stabilität von MgsR durch mögliche Arg-Ps im Detail untersucht werden.
In diesem Zusammenhang wurden durch detaillierte Untersuchungen der MgsR Degradation zusätzliche Informationen zur Funktionsweise von McsB als Adapterprotein gesammelt. Dieses legten die Vermutung nahe, dass McsB nicht nur als ClpC-Adapterprotein fungiert, sondern darüber hinaus auch die ClpX-abhängige Proteindegradation unterstützt.
Regulated ATP-dependent proteolysis is a common feature of developmental processes and plays also a crucial role during environmental perturbations such as stress and starvation. The Bacillus subtilis MgsR regulator controls a subregulon within the stress- and stationary phase σB regulon. After ethanol exposition and a short time-window of activity, MgsR is ClpXP-dependently degraded with a half-life of approximately 6 min. Surprisingly, a protein interaction analysis with MgsR revealed an association with the McsB arginine kinase and an in vivo degradation assay confirmed a strong impact of McsB on MgsR degradation. In vitro phosphorylation experiments with arginine (R) by lysine (K) substitutions in McsB and its activator McsA unraveled all R residues, which are essentially needed for the arginine kinase reaction. Subsequently, site directed mutagenesis of the MgsR substrate was used to substitute all arginine residues with glutamate (R-E) to mimic arginine phosphorylation and to test their influence on MgsR degradation in vivo. It turned out, that especially the R33E and R94/95E residues (RRPI motif), the latter are adjacently located to the two redox-sensitive cysteines in a 3D model, have the potential to accelerate MgsR degradation. These results imply that selective arginine phosphorylation may have favorable effects for Clp dependent degradation of short-living regulatory proteins. We speculate that in addition to its kinase activity and adaptor function for the ClpC ATPase, McsB might also serve as a proteolytic adaptor for the ClpX ATPase in the degradation mechanism of MgsR.