Refine
Document Type
- Article (7)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- bentonite (4)
- smectite (3)
- - (2)
- SEM–EDS (2)
- layer charge (2)
- metal substitution (2)
- organic supplements (2)
- ABM test (1)
- Alumino-silicate glass (1)
- Clay mineral diagenesis (1)
Institute
Publisher
- MDPI (5)
- Springer Nature (1)
- Wiley (1)
A hydroxy-sodalite/cancrinite zeolite composite was synthesized from low-grade calcite-bearing kaolin by hydrothermal alkali-activation method at 160 C for 6 h. The effect of calcite addition on the formation of the hydroxy-sodalite/cancrinite composite was investigated
using artificial mixtures. The chemical composition and crystal morphology of the synthesized zeolite composite were characterized by X-ray powder diffraction, infrared spectroscopy, scanning electron microscopy, and N2 adsorption/desorption analyses. The average specific surface area is around 17–20 m2g-1, whereas the average pore size lies in the mesoporous range (19–21 nm). The synthesized zeolite composite was used as an adsorbent for the removal of heavy metals in aqueous solutions. Batch experiments were employed to study the influence of adsorbent dosage on heavy metal removal eciency. Results demonstrate the effective removal of significant quantities of Cu, Pb, Ni, and Zn from aqueous media. A comparative study of synthesized hydroxy-sodalite and
hydroxy-sodalite/cancrinite composites revealed the latter was 16–24% more effcient at removing heavy metals from water. The order of metal uptake effciency for these zeolites was determined to be Pb > Cu > Zn > Ni. These results indicate that zeolite composites synthesized from natural calcite-bearing kaolin materials could represent effective and low-cost adsorbents for heavy metal removal using water treatment devices in regions of water hortage.
Bentonite is currently proposed as a potential backfill material for sealing high-level radioactive waste in underground repositories due to its low hydraulic conductivity, self-sealing ability and high adsorption capability. However, saline pore waters, high temperatures and the influence of microbes may cause mineralogical changes and affect the long-term performance of the bentonite barrier system. In this study, long-term static batch experiments were carried out at 25 °C and 90 °C for one and two years using two different industrial bentonites (SD80 from Greece, B36 from Slovakia) and two types of aqueous solutions, which simulated (a) Opalinus clay pore water with a salinity of 19 g·L−1, and (b) diluted cap rock solution with a salinity of 155 g·L−1. The bentonites were prepared with and without organic substrates to study the microbial community and their potential influence on bentonite mineralogy. Smectite alteration was dominated by metal ion substitutions, changes in layer charge and delamination during water–clay interaction. The degree of smectite alteration and changes in the microbial diversity depended largely on the respective bentonite and the experimental conditions. Thus, the low charged SD80 with 17% tetrahedral charge showed nearly no structural change in either of the aqueous solutions, whereas B36 as a medium charged smectite with 56% tetrahedral charge became more beidellitic with increasing temperature when reacted in the diluted cap rock solution. Based on these experiments, the alteration of the smectite is mainly attributed to the nature of the bentonite, pore water chemistry and temperature. A significant microbial influence on the here analyzed parameters was not observed within the two years of experimentation. However, as the detected genera are known to potentially influence geochemical processes, microbial-driven alteration occurring over longer time periods cannot be ruled out if organic nutrients are available at appropriate concentrations.
: Compacted bentonite is currently being considered as a suitable backfill material for sealing
underground repositories for radioactive waste as part of a multi-barrier concept. Although showing
favorable properties for this purpose (swelling capability, low permeability, and high adsorption
capacity), the best choice of material remains unclear. The goal of this study was to examine and
compare the hydration behavior of a Milos (Greek) Ca-bentonite sample (SD80) in two types of
simulated ground water: (i) Opalinus clay pore water, and (ii) a diluted saline cap rock brine using
a confined volume, flow-through reaction cell adapted for in situ monitoring by X-ray diffraction.
Based on wet-cell X-ray diffractometry (XRD) and calculations with the software CALCMIX of the
smectite d(001) reflection, it was possible to quantify the abundance of water layers (WL) in the
interlayer spaces and the amount of non-interlayer water uptake during hydration using the two
types of solutions. This was done by varying WL distributions to fit the CALCMIX-simulated XRD
model to the observed data. Hydrating SD80 bentonite with Opalinus clay pore water resulted
in the formation of a dominant mixture of 3- and 4-WLs. The preservation of ca. 10% 1-WLs and
the apparent disappearance of 2-WLs in this hydrated sample are attributed to small quantities of
interlayer K (ca. 8% of exchangeable cations). The SD80 bentonite of equivalent packing density
that was hydrated in diluted cap rock brine also contained ca. 15% 1-WLs, associated with a slightly
higher concentration of interlayer K. However, this sample showed notable suppression of WL
thickness with 2- and 3-WLs dominating in the steady-state condition. This effect is to be expected for
the higher salt content of the brine but the observed generation of CO2 gas in this experiment, derived
from enhanced dissolution of calcite, may have contributed to the suppression of WL thickness. Based
on a comparison with all published wet-cell bentonite hydration experiments, the ratio of packing
density to the total layer charge of smectite is suggested as a useful proxy for predicting the relative
amounts of interlayer and non-interlayer water incorporated during hydration. Such information is
important for assessing the subsequent rates of chemical transport through the bentonite barrier.
Thermally treated kaolinite is used to develop a range of alumino‐silicate‐based precursor materials but its behavior during plasma spraying has not been well‐researched. In this study, two types of kaolinite samples were investigated in the form of low defect (KGa‐1b) and high defect (KGa‐2) varieties. The extreme temperatures of the plasma stream (up to 20 000 K) induced flash melting to produce a highly porous alumino‐silicate glass without any crystallization of new Al−Si oxide minerals. The glass is comprised largely of intact or deformed spheres (average diameters 1.14–1.44 μm), which indicates rapid quenching and solidification before impact. The subspherical structures contain up to 40 % closed pore space caused by the rapid escape of water during melting. The low‐density, porous alumino‐silicate glass coatings with predicted specific surface areas (>0.95 m2/g) and hardnesses >1.8 GPa represent a potentially reactive but physically stable substrate ideal for further chemical functionalization.
Pilot sites are currently used to test the performance of bentonite barriers for sealing high-level radioactive waste repositories, but the degree of mineral stability under enhanced thermal conditions remains a topic of debate. This study focuses on the SKB ABM5 experiment, which ran for 5 years (2012 to 2017) and locally reached a maximum temperature of 250 °C. Five bentonites were investigated using XRD with Rietveld refinement, SEM-EDX and by measuring pH, CEC and EC. Samples extracted from bentonite blocks at 0.1, 1, 4 and 7 cm away from the heating pipe showed various stages of alteration related to the horizontal thermal gradient. Bentonites close to the contact with lower CEC values showed smectite alterations in the form of tetrahedral substitution of Si4+ by Al3+ and some octahedral metal substitutions, probably related to ferric/ferrous iron derived from corrosion of the heater during oxidative boiling, with pyrite dissolution and acidity occurring in some bentonite layers. This alteration was furthermore associated with higher amounts of hematite and minor calcite dissolution. However, as none of the bentonites showed any smectite loss and only displayed stronger alterations at the heater–bentonite contact, the sealants are considered to have remained largely intact.
Diagenetic illite growth in porous sandstones leads to significant modifications of the initial pore system which result in tight reservoirs. Understanding and quantifying these changes provides insight into the porosity-permeability history of the reservoir and improves predictions on petrophysical behavior. To characterize the various stages of diagenetic alteration, a focused ion beam – scanning electron microscopy (FIB-SEM) study was undertaken on aeolian sandstones from the Bebertal outcrop of the Parchim Formation (Early Permian Upper Rotliegend group). Based on 3D microscopic reconstructions, three different textural types of illite crystals occur, common to many tight Rotliegend sandstones, namely (1) feldspar grain alterations and associated illite meshworks, (2) tangential grain coats, and (3) pore-filling laths and fibers. Reaction textures, pore structure quantifications, and numerical simulations of fluid transport have revealed that different generations of nano-porosity are connected to the diagenetic alteration of feldspars and the authigenic growth of pore-filling illites. The latter leads to the formation of microstructures that range from authigenic compact tangential grain coatings to highly porous, pore-filling structures. K-feldspar replacement and initial grain coatings of illite are composed primarily of disordered 1Md illite whereas the epitaxially grown illite lath- and fiber-shaped crystals occurring as pore-filling structures are of the trans-vacant 1Mtv polytype. Although all analyzed 3D structures offer connected pathways, the largest reduction in sandstone permeability occurred during the initial formation of the tangential illite coatings that sealed altered feldspars and the subsequent growth of pore-filling laths and fibrous illites. Analyses of both illite pore-size and crystallite-size distributions indicate that crystal growth occurred by a continuous nucleation and growth mechanism probably controlled by the multiple influx of potassium-rich fluids during late Triassic and Jurassic times. The detailed insight into the textural varieties of illite crystal growth and its calculated permeabilities provides important constraints for understanding the complexities of fluid-flow in tight reservoir sandstones.