Refine
Document Type
- Article (12)
- Doctoral Thesis (1)
Language
- English (13)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- - (5)
- flupirtine (3)
- retigabine (3)
- BCL11B (1)
- CCHC zinc finger (1)
- Enhanced Sampling (1)
- K (1)
- KCNQ (1)
- KV7 (1)
- Moleküldynamik (1)
Institute
Publisher
- Wiley (6)
- MDPI (4)
- ACS Publications (1)
- Frontiers Media S.A. (1)
Abstract
The KV7 potassium channel openers flupirtine and retigabine have been valuable options in the therapy of pain and epilepsy. However, as a result of adverse reactions, both drugs are currently no longer in therapeutic use. The flupirtine‐induced liver injury and the retigabine linked tissue discolouration do not appear related at first glance; nevertheless, both events can be attributed to the triaminoaryl scaffold, which is affected by oxidation leading to elusive reactive quinone diimine or azaquinone diimine metabolites. Since the mechanism of action, i. e. KV7 channel opening, seems not to be involved in toxicity, this study aimed to further develop safer replacements for flupirtine and retigabine. In a ligand‐based design strategy, replacing amino substituents of the triaminoaryl core with alkyl substituents led to carba analogues with improved oxidation resistance and negligible risk of quinoid metabolite formation. In addition to these improved safety features, some of the novel analogues exhibited significantly improved KV7.2/3 channel opening activity, indicated by an up to 13‐fold increase in potency and an efficacy of up to 176 % compared to flupirtine, thus being attractive candidates for further development.
Unveiling the N-Terminal Homodimerization of BCL11B by Hybrid Solvent Replica-Exchange Simulations
(2021)
Transcription factors play a crucial role in regulating biological processes such as cell
growth, differentiation, organ development and cellular signaling. Within this group, proteins
equipped with zinc finger motifs (ZFs) represent the largest family of sequence-specific DNA-binding
transcription regulators. Numerous studies have proven the fundamental role of BCL11B for a
variety of tissues and organs such as central nervous system, T cells, skin, teeth, and mammary
glands. In a previous work we identified a novel atypical zinc finger domain (CCHC-ZF) which
serves as a dimerization interface of BCL11B. This domain and formation of the dimer were shown
to be critically important for efficient regulation of the BCL11B target genes and could therefore
represent a promising target for novel drug therapies. Here, we report the structural basis for
BCL11B–BCL11B interaction mediated by the N-terminal ZF domain. By combining structure
prediction algorithms, enhanced sampling molecular dynamics and fluorescence resonance energy
transfer (FRET) approaches, we identified amino acid residues indispensable for the formation of
the single ZF domain and directly involved in forming the dimer interface. These findings not only
provide deep insight into how BCL11B acquires its active structure but also represent an important
step towards rational design or selection of potential inhibitors.
KV7 channel openers have proven their therapeutic value in the treatment of pain as well as epilepsy and, moreover, they hold the potential to expand into additional indications with unmet medical needs. However, the clinically validated but meanwhile discontinued KV7 channel openers flupirtine and retigabine bear an oxidation‐sensitive triaminoraryl scaffold, which is suspected of causing adverse drug reactions via the formation of quinoid oxidation products. Here, we report the design and synthesis of nicotinamide analogs and related compounds that remediate the liability in the chemical structure of flupirtine and retigabine. Optimization of a nicotinamide lead structure yielded analogs with excellent KV7.2/3 opening activity, as evidenced by EC50 values approaching the single‐digit nanomolar range. On the other hand, weighted KV7.2/3 opening activity data including inactive compounds allowed for the establishment of structure–activity relationships and a plausible binding mode hypothesis verified by docking and molecular dynamics simulations.
The potassium channel opening drugs flupirtine and retigabine have been withdrawn from the market due to occasional drug-induced liver injury (DILI) and tissue discoloration, respectively. While the mechanism underlying DILI after prolonged flupirtine use is not entirely understood, evidence indicates that both drugs are metabolized in an initial step to reactive ortho- and/or para-azaquinone diimines or ortho- and/or para-quinone diimines, respectively. Aiming to develop safer alternatives for the treatment of pain and epilepsy, we have attempted to separate activity from toxicity by employing a drug design strategy of avoiding the detrimental oxidation of the central aromatic ring by shifting oxidation toward the formation of benign metabolites. In the present investigation, an alternative retrometabolic design strategy was followed. The nitrogen atom, which could be involved in the formation of both ortho- or para-quinone diimines of the lead structures, was shifted away from the central ring, yielding a substitution pattern with nitrogen substituents in the meta position only. Evaluation of KV7.2/3 opening activity of the 11 new specially designed derivatives revealed surprisingly steep structure–activity relationship data with inactive compounds and an activity cliff that led to the identification of an apparent “magic methyl” effect in the case of N-(4-fluorobenzyl)-6-[(4-fluorobenzyl)amino]-2-methoxy-4-methylnicotinamide. This flupirtine analogue showed potent KV7.2/3 opening activity, being six times as active as flupirtine itself, and by design is devoid of the potential for azaquinone diimine formation.
The pathobiont Streptococcus pneumoniae causes life-threatening diseases, including pneumonia, sepsis, meningitis, or non-invasive infections such as otitis media. Serine proteases are enzymes that have been emerged during evolution as one of the most abundant and functionally diverse group of proteins in eukaryotic and prokaryotic organisms. S. pneumoniae expresses up to four extracellular serine proteases belonging to the category of trypsin-like or subtilisin-like family proteins: HtrA, SFP, PrtA, and CbpG. These serine proteases have recently received increasing attention because of their immunogenicity and pivotal role in the interaction with host proteins. This review is summarizing and focusing on the molecular and functional analysis of pneumococcal serine proteases, thereby discussing their contribution to pathogenesis.
The EyeFlowCell: Development of a 3D-Printed Dissolution Test Setup for Intravitreal Dosage Forms
(2021)
An in vitro dissolution model, the so-called EyeFlowCell (EFC), was developed to test intravitreal dosage forms, simulating parameters such as the gel-like consistency of the vitreous body. The developed model consists of a stereolithography 3D-printed flow-through cell with a polyacrylamide (PAA) gel as its core. This gel needed to be coated with an agarose sheath because of its low viscosity. Drug release from hydroxypropyl methylcellulose-based implants containing either triamcinolone acetonide or fluorescein sodium was studied in the EFC using a schematic eye movement by the EyeMovementSystem (EyeMoS). For comparison, studies were performed in USP apparatus 4 and USP apparatus 7. Significantly slower drug release was observed in the PAA gel for both model drugs compared with the compendial methods. Drug release from fluorescein sodium-containing model implants was completed after 40 min in USP apparatus 4, whereas drug release in the gel-based EFC lasted 72 h. Drug release from triamcinolone acetonide-containing model implants was completed after 35 min in USP apparatus 4 and after 150 min in USP apparatus 7, whereas this was delayed until 96 h in the EFC. These results suggest that compendial release methods may overestimate the drug release rate in the human vitreous body. Using a gel-based in vitro release system such as the EFC may better predict drug release.
Abstract
Saliva is an attractive sampling matrix for measuring various endogenous and exogeneous substances but requires sample treatment prior to chromatographic analysis. Exploiting supercritical CO2 for both extraction and chromatography simplifies sample preparation, reduces organic solvent consumption, and minimizes exposure to potentially infectious samples, but has not yet been applied to oral fluid. Here, we demonstrate the feasibility and benefits of online supercritical fluid extraction coupled to supercritical fluid chromatography and single‐quadrupole mass spectrometry for monitoring the model salivary tracer caffeine. A comparison of 13C‐ and 32S‐labeled internal standards with external standard calibration confirmed the superiority of stable isotope‐labeled caffeine over nonanalogous internal standards. As proof of concept, the validated method was applied to saliva from a magnetic resonance imaging study of gastric emptying. After administration of 35 mg caffeine via ice capsule, salivary levels correlated with magnetic resonance imaging data, corroborating caffeine's usefulness as tracer of gastric emptying (R2 = 0.945). In contrast to off‐line methods, online quantification required only minute amounts of organic solvents and a single manual operation prior to online bioanalysis of saliva, thus demonstrating the usefulness of CO2‐based extraction and separation techniques for potentially infective biomatrices.