Refine
Document Type
- Article (10)
Language
- English (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- - (10)
- aging (4)
- lipidomics (3)
- caveolae (2)
- erythrocytes (2)
- fatty acids (2)
- hemodialysis (2)
- inflammation (2)
- perivascular adipose tissue (2)
- Alzheimer’s disease (1)
Institute
Publisher
- MDPI (4)
- Frontiers Media S.A. (3)
- S. Karger AG (1)
- Wiley (1)
Abstract
Fatty acid products derived from cytochromes P450 (CYP) monooxygenase and lipoxygenase (LOX)/CYP ω/(ω‐1)‐hydroxylase pathways are a superclass of lipid mediators with potent bioactivities. Whether or not the chronic kidney disease (CKD) and hemodialysis treatments performed on end‐stage renal disease (ESRD) patients affect RBC epoxy fatty acids profiles remains unknown. Measuring the products solely in plasma is suboptimal. Since such determinations invariably ignore red blood cells (RBCs) that make up 3 kg of the circulating blood. RBCs are potential reservoirs for epoxy fatty acids that regulate cardiovascular function. We studied 15 healthy persons and 15 ESRD patients undergoing regular hemodialysis treatments. We measured epoxides derived from CYP monooxygenase and metabolites derived from LOX/CYP ω/(ω‐1)‐hydroxylase pathways in RBCs by LC–MS/MS tandem mass spectrometry. Our data demonstrate that various CYP epoxides and LOX/CYP ω/(ω‐1)‐hydroxylase products are increased in RBCs of ESRD patients, compared to control subjects, including dihydroxyeicosatrienoic acids (DHETs), epoxyeicosatetraenoic acids (EEQs), dihydroxydocosapentaenoic acids (DiHDPAs), and hydroxyeicosatetraenoic acids (HETEs). Hemodialysis treatment did not affect the majority of those metabolites. Nevertheless, we detected more pronounced changes in free metabolite levels in RBCs after dialysis, as compared with the total RBC compartment. These findings indicate that free RBC eicosanoids should be considered more dynamic or vulnerable in CKD.
Factors causing the increased cardiovascular morbidity and mortality in hemodialysis (HD) patients are largely unknown. Oxylipins are a superclass of lipid mediators with potent bioactivities produced from oxygenation of polyunsaturated fatty acids. We previously assessed the impact of HD on oxylipins in arterial blood plasma and found that HD increases several oxylipins. To study the phenomenon further, we now evaluated the differences in arterial and venous blood oxylipins from patients undergoing HD. We collected arterial and venous blood samples in upper extremities from 12 end-stage renal disease (ESRD) patients before and after HD and measured oxylipins in plasma by LC-MS/MS tandem mass spectrometry. Comparison between cytochrome P450 (CYP), lipoxygenase (LOX), and LOX/CYP ω/(ω-1)-hydroxylase metabolites levels from arterial and venous blood showed no arteriovenous differences before HD but revealed arteriovenous differences in several CYP metabolites immediately after HD. These changes were explained by metabolites in the venous blood stream of the upper limb. Decreased soluble epoxide hydrolase (sEH) activity contributed to the release and accumulation of the CYP metabolites. However, HD did not affect arteriovenous differences of the majority of LOX and LOX/CYP ω/(ω-1)-hydroxylase metabolites. The HD treatment itself causes changes in CYP epoxy metabolites that could have deleterious effects in the circulation.
Long-chain fatty acids (LCFAs) serve as energy sources, components of cell membranes, and precursors for signaling molecules. Uremia alters LCFA metabolism so that the risk of cardiovascular events in chronic kidney disease (CKD) is increased. End-stage renal disease (ESRD) patients undergoing dialysis are particularly affected and their hemodialysis (HD) treatment could influence blood LCFA bioaccumulation and transformation. We investigated blood LCFA in HD patients and studied LCFA profiles in vivo by analyzing arterio–venous (A–V) LFCA differences in upper limbs. We collected arterial and venous blood samples from 12 ESRD patients, before and after HD, and analyzed total LCFA levels in red blood cells (RBCs) and plasma by LC–MS/MS tandem mass spectrometry. We observed that differences in arterial and venous LFCA contents within RBCs (RBC LCFA A–V differences) were affected by HD treatment. Numerous saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) n-6 showed negative A–V differences, accumulated during peripheral tissue perfusion of the upper limbs, in RBCs before HD. HD reduced these differences. The omega-3 quotient in the erythrocyte membranes was not affected by HD in either arterial or venous blood. Our data demonstrate that A–V differences in fatty acids status of LCFA are present and active in mature erythrocytes and their bioaccumulation is sensitive to single HD treatment.
Editorial: Renal Hypertension at the Crossroads: Theoretical, Experimental and Clinical Aspects
(2020)
Background: Mild-to-moderate chronic kidney disease (CKD G3a) is prevalent in older adults. Substantial evidence suggests that individuals with advanced CKD face a high risk for common geriatric conditions, like functional impairment and cognitive decline, whereas the relationships between mild-to-moderate CKD and functional impairment and cognitive decline, but also poor nutritional status and mood disorders, are still unclear. Objective: The aim of this study was to explore associations between mild-to-moderate CKD and impairments in the core domains of geriatric assessment (GA) in a large cohort of community-dwelling older adults. Methods: This was a cross-sectional analysis of 1,476 participants of the Berlin Aging Study II. Study participants were stratified as to presence or absence of CKD G3a (estimated glomerular filtration rate [eGFR] 45-59 mL/min/1.73 m<sup>2</sup> vs. eGFR ≥60 mL/min/1.73 m<sup>2</sup>). GA comprised the following instruments: the Activities of Daily Living Scale (ADL), the Timed up and Go (TUG), the Tinetti test (Tinetti), the Mini-Mental-State Examination (MMSE), the Geriatric Depression Scale (GDS), and the Mini Nutritional Assessment (MNA). We used logistic regression models to estimate multivariable-adjusted associations between CKD G3a and impairments in the respective domains. Results: A total of 282 subjects with mild-to-moderate CKD (CKD G3a) were identified (19.1%). Overall, the prevalence of impairments identified was higher among subjects with compared to without CKD G3a (21 vs. 15.9%, p = 0.043). In multivariable-adjusted models, CKD G3a was consistently associated with increased odds of an impaired gait performance as to the TUG (adjusted odds ratio 2.06, 95% CI 1.04-4.09). In contrast, on average, individuals with and without CKD G3a did not differ as to their results in the MMSE, the ADL, the MNA, and the GDS. Conclusion: GA identified impairments in 21 versus 15.9% of older adults with and without mild-to-moderate CKD, respectively. However, except for an increased likelihood of impaired gait performance (TUG) with mild-to-moderate CKD, we did not find independent associations between mild-to-moderate CKD and geriatric conditions.
Over the past decades, the human life span has dramatically increased, and therefore, a steady increase in diseases associated with age (such as Alzheimer’s disease and Parkinson’s disease) is expected. In these neurodegenerative diseases, there is a cognitive decline and memory loss, which accompany increased systemic inflammation, the inflamm-aging, and the insulin resistance. Despite numerous studies of age-related pathologies, data on the contribution of brain insulin resistance and innate immunity components to aging are insufficient. Recently, much research has been focused on the consequences of nutrients and adiposity- and nutrient-related signals in brain aging and cognitive decline. Moreover, given the role of metainflammation in neurodegeneration, lifestyle interventions such as calorie restriction may be an effective way to break the vicious cycle of metainflammation and have a role in social behavior. The various effects of calorie restriction on metainflammation, insulin resistance, and neurodegeneration have been described. Less attention has been paid to the social determinants of aging and the possible mechanism by which calorie restriction might influence social behavior. The purpose of this review is to discuss current knowledge in the interdisciplinary field of geroscience—immunosenescence, inflamm-aging, and metainflammation—which makes a significant contribution to aging. A substantial part of the review is devoted to frontiers in the brain insulin resistance in relation to neuroinflammation. In addition, we summarize new data on potential mechanisms of calorie restriction that influence as a lifestyle intervention on the social brain. This knowledge can be used to initiate successful aging and slow the onset of neurodegenerative diseases.
Abstract
Caveolae position CaV3.2 (T‐type Ca2+ channel encoded by the α‐3.2 subunit) sufficiently close to RyR (ryanodine receptors) for extracellular Ca2+ influx to trigger Ca2+ sparks and large‐conductance Ca2+‐activated K+ channel feedback in vascular smooth muscle. We hypothesize that this mechanism of Ca2+ spark generation is affected by age. Using smooth muscle cells (VSMCs) from mouse mesenteric arteries, we found that both Cav3.2 channel inhibition by Ni2+ (50 µM) and caveolae disruption by methyl‐ß‐cyclodextrin or genetic abolition of Eps15 homology domain‐containing protein (EHD2) inhibited Ca2+ sparks in cells from young (4 months) but not old (12 months) mice. In accordance, expression of Cav3.2 channel was higher in mesenteric arteries from young than old mice. Similar effects were observed for caveolae density. Using SMAKO Cav1.2−/− mice, caffeine (RyR activator) and thapsigargin (Ca2+ transport ATPase inhibitor), we found that sufficient SR Ca2+ load is a prerequisite for the CaV3.2‐RyR axis to generate Ca2+ sparks. We identified a fraction of Ca2+ sparks in aged VSMCs, which is sensitive to the TRP channel blocker Gd3+ (100 µM), but insensitive to CaV1.2 and CaV3.2 channel blockade. Our data demonstrate that the VSMC CaV3.2‐RyR axis is down‐regulated by aging. This defective CaV3.2‐RyR coupling is counterbalanced by a Gd3+ sensitive Ca2+ pathway providing compensatory Ca2+ influx for triggering Ca2+ sparks in aged VSMCs.
Aging is an independent risk factor for hypertension, cardiovascular morbidity, and mortality. However, detailed mechanisms linking aging to cardiovascular disease are unclear. We studied the aging effects on the role of perivascular adipose tissue and downstream vasoconstriction targets, voltage-dependent KV7 channels, and their pharmacological modulators (flupirtine, retigabine, QO58, and QO58-lysine) in a murine model. We assessed vascular function of young and old mesenteric arteries in vitro using wire myography and membrane potential measurements with sharp electrodes. We also performed bulk RNA sequencing and quantitative reverse transcription-polymerase chain reaction tests in mesenteric arteries and perivascular adipose tissue to elucidate molecular underpinnings of age-related phenotypes. Results revealed impaired perivascular adipose tissue-mediated control of vascular tone particularly via KV7.3–5 channels with increased age through metabolic and inflammatory processes and release of perivascular adipose tissue-derived relaxation factors. Moreover, QO58 was identified as novel pharmacological vasodilator to activate XE991-sensitive KCNQ channels in old mesenteric arteries. Our data suggest that targeting inflammation and metabolism in perivascular adipose tissue could represent novel approaches to restore vascular function during aging. Furthermore, KV7.3–5 channels represent a promising target in cardiovascular aging.
Metabolic syndrome is a significant worldwide public health challenge and is inextricably linked to adverse renal and cardiovascular outcomes. The inhibition of the transient receptor potential cation channel subfamily C member 6 (TRPC6) has been found to ameliorate renal outcomes in the unilateral ureteral obstruction (UUO) of accelerated renal fibrosis. Therefore, the pharmacological inhibition of TPRC6 could be a promising therapeutic intervention in the progressive tubulo-interstitial fibrosis in hypertension and metabolic syndrome. In the present study, we hypothesized that the novel selective TRPC6 inhibitor SH045 (larixyl N-methylcarbamate) ameliorates UUO-accelerated renal fibrosis in a New Zealand obese (NZO) mouse model, which is a polygenic model of metabolic syndrome. The in vivo inhibition of TRPC6 by SH045 markedly decreased the mRNA expression of pro-fibrotic markers (Col1α1, Col3α1, Col4α1, Acta2, Ccn2, Fn1) and chemokines (Cxcl1, Ccl5, Ccr2) in UUO kidneys of NZO mice compared to kidneys of vehicle-treated animals. Renal expressions of intercellular adhesion molecule 1 (ICAM-1) and α-smooth muscle actin (α-SMA) were diminished in SH045- versus vehicle-treated UUO mice. Furthermore, renal inflammatory cell infiltration (F4/80+ and CD4+) and tubulointerstitial fibrosis (Sirius red and fibronectin staining) were ameliorated in SH045-treated NZO mice. We conclude that the pharmacological inhibition of TRPC6 might be a promising antifibrotic therapeutic method to treat progressive tubulo-interstitial fibrosis in hypertension and metabolic syndrome.
Endothelial dysfunction (ED) comes with age, even without overt vessel damage such as that which occurs in atherosclerosis and diabetic vasculopathy. We hypothesized that aging would affect the downstream signalling of the endothelial nitric oxide (NO) system in the vascular smooth muscle (VSM). With this in mind, resistance mesenteric arteries were isolated from 13-week (juvenile) and 40-week-old (aged) mice and tested under isometric conditions using wire myography. Acetylcholine (ACh)-induced relaxation was reduced in aged as compared to juvenile vessels. Pretreatment with L-NAME, which inhibits nitrix oxide synthases (NOS), decreased ACh-mediated vasorelaxation, whereby differences in vasorelaxation between groups disappeared. Endothelium-independent vasorelaxation by the NO donor sodium nitroprusside (SNP) was similar in both groups; however, SNP bolus application (10−6 mol L−1) as well as soluble guanylyl cyclase (sGC) activation by runcaciguat (10−6 mol L−1) caused faster responses in juvenile vessels. This was accompanied by higher cGMP concentrations and a stronger response to the PDE5 inhibitor sildenafil in juvenile vessels. Mesenteric arteries and aortas did not reveal apparent histological differences between groups (van Gieson staining). The mRNA expression of the α1 and α2 subunits of sGC was lower in aged animals, as was PDE5 mRNA expression. In conclusion, vasorelaxation is compromised at an early age in mice even in the absence of histopathological alterations. Vascular smooth muscle sGC is a key element in aged vessel dysfunction.