Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- - (1)
- Diagonalassay (1)
- Etrx (1)
- Lipoproteine (1)
- Mausmodell (1)
- MsrAB2 (1)
- Oxidativer Stress (1)
- Pneumonie (1)
- Proteinreparatur (1)
- Streptococcus pneumoniae (1)
Institute
Publisher
Streptococcus pneumoniae (Pneumokokken) sind Gram-positive und Katalase-negative humanspezifische Kommensalen der oberen und unteren Atemwege. Diese Bakterien sind andererseits auch als schwere Krankheitserreger bekannt und verursachen bei verschiedenen Bevölkerungsgruppen, wie beispielsweise Kindern, Älteren und immungeschwächten Personen sowohl Atemwegs- als auch lebensbedrohliche invasive Erkrankungen wie eine ambulant erworbene Pneumonie, Meningitis und Sepsis. Pneumokokken haben aufgrund ihrer Besiedelung des Respirationstraktes effiziente Mechanismen entwickelt, um in einer sauerstoffreichen Nische überleben zu können. Dabei richten sich die Mechanismen vor allem gegen reaktive Sauerstoffspezies (Reactive Oxygen Spezies, ROS), die einerseits als Abwehrfunktion des Wirts (oxidative burst) vom angeborenen Immunsystem und andererseits von den Pneumokokken selbst produziert werden, um als chemische Waffe zur Bekämpfung bakterieller Konkurrenten in ihrem Habitat eingesetzt zu werden. In der vorliegenden Arbeit wurde ein hochkonserviertes Zwei-Operon-System, das für die extrazelluläre oxidative Stress-Resistenz in S. pneumoniae verantwortlich ist, identifiziert und auf pathophysiologischer sowie struktureller Ebene charakterisiert. Dieses komplexe System besteht aus zwei integralen Cytochrom C-ähnlichen Membranproteinen (CcdA1 und CcdA2), zwei Thioredoxin-ähnlichen Lipoproteinen (Etrx1 und Etrx2) und einer Methioninsulfoxid-Reduktase AB2 (MsrAB2). Die Etrx-Proteine werden zwar in zwei räumlich voneinander getrennten Operonen kodiert, sind aber funktionell miteinander verbunden. Der Einfluss des Systems auf die Pathogenese der Pneumokokken wurde in Maus-Virulenz-Studien und Untersuchungen der Phagozytose unter Verwendung von isogenen Mutanten gezeigt. Sowohl in den in vivo als auch den in vitro Experimenten konnte gezeigt werden, dass der Verlust der Funktion beider Etrx-Proteine beziehungsweise der Methioninsulfoxid-Reduktase MsrAB2 die Virulenz der Pneumokokken stark reduziert. Hieraus resultierte eine erheblich verringerte Letalität des Wirts, eine beschleunigte bakterielle Aufnahme durch die Makrophagen sowie ein schnelleres Abtöten der Pneumokokken durch eine oxidative Schädigung von Oberflächen-lokalisierten Proteinen mittels Wasserstoffperoxid. Die Ergebnisse deuten darauf hin, dass Etrx2 die Abwesenheit von Etrx1 und umgekehrt Etrx1 das Defizit von Etrx2 kompensieren kann. Durch Strukturaufklärung der beiden Thioredoxin-ähnlichen Proteine Etrx1 und Etrx2 sowie der Modellierung der beteiligten Komponenten CcdA und MsrAB2 konnte die Rolle jedes einzelnen Proteins dieses Systems (CcdA-Etrx-MsrAB2-System) bei der Reparatur beschädigter Oberflächen-lokalisierter Proteine in einem Modell dargestellt werden. Das postulierte Modell konnte über in vivo und in vitro Untersuchungen des Elektronentransfers innerhalb dieses Systems bestätigt werden. Mit der Bestimmung der Standardredoxpotentiale der rekombinanten Proteine Etrx1, Etrx2 und der Einzeldomänen MsrA2 und MsrB2 konnte in vitro gezeigt werden, dass der Elektronenfluss in Richtung von Etrx1 und Etrx2 zu MsrAB2 erfolgen muss. Die direkte Elektronenübertragung zwischen diesen Proteinen konnte in kinetischen Experimenten gezeigt werden. Die Messungen ergaben, dass Etrx1 bevorzugt mit der MsrA2-Untereinheit interagiert beziehungsweise Etrx2 sowohl mit der MsrA2-Untereinheit als auch mit der MsrB2-Untereinheit in Wechselwirkung treten kann. Der in vivo Redoxzustand von MsrAB2 wurde unter Verwendung der nicht-reduzierenden/reduzierenden „2D-Diagonal“-SDS-PAGE in den isogenen ccdA- und etrx-Mutanten bestimmt. Hierbei konnte ein Unterschied im Redoxzustand von MsrAB2 in den isogenen Einzelmutanten und Doppelmutanten von ccdA und etrx beobachtet werden. Während in den Einzelmutanten der Elektronenfluss innerhalb des CcdA-Etrx-MsrAB2-Systems unverändert war, zeigte sich in den Doppelmutanten ccdA1/ccdA2 und etrx1/etrx2 eine deutliche Beeinträchtigung der Elektronenübertragung auf MsrAB2, welche sich in der Zunahme der oxidierten Form von MsrAB2 deutlich machte. Somit konnte der Elektronenfluss von sowohl von CcdA1 über Etrx1 zu MsrAB2 als auch von CcdA2 über Etrx2 zu MsrAB2 in vivo betätigt werden. In Anbetracht der Ergebnisse dieser Arbeit könnte das hochkonservierte CcdA-Etrx-MsrAB2-System der extrazellulären oxidativen Stress-Resistenz von S. pneumoniae zur Entwicklung proteinbasierter Pneumokokken-Impfstoffe und zum Angriffspunkt für Behandlungen gegen diese wichtigen humanpathogenen Erreger beitragen.
Intranasal Vaccination With Lipoproteins Confers Protection Against Pneumococcal Colonisation
(2018)
Streptococcus pneumoniae is endowed with a variety of surface-exposed proteins representing putative vaccine candidates. Lipoproteins are covalently anchored to the cell membrane and highly conserved among pneumococcal serotypes. Here, we evaluated these lipoproteins for their immunogenicity and protective potential against pneumococcal colonisation. A multiplex-based immunoproteomics approach revealed the immunogenicity of selected lipoproteins. High antibody titres were measured in sera from mice immunised with the lipoproteins MetQ, PnrA, PsaA, and DacB. An analysis of convalescent patient sera confirmed the immunogenicity of these lipoproteins. Examining the surface localisation and accessibility of the lipoproteins using flow cytometry indicated that PnrA and DacB were highly abundant on the surface of the bacteria. Mice were immunised intranasally with PnrA, DacB, and MetQ using cholera toxin subunit B (CTB) as an adjuvant, followed by an intranasal challenge with S. pneumoniae D39. PnrA protected the mice from pneumococcal colonisation. For the immunisation with DacB and MetQ, a trend in reducing the bacterial load could be observed, although this effect was not statistically significant. The reduction in bacterial colonisation was correlated with the increased production of antigen-specific IL-17A in the nasal cavity. Immunisation induced high systemic IgG levels with a predominance for the IgG1 isotype, except for DacB, where IgG levels were substantially lower compared to MetQ and PnrA. Our results indicate that lipoproteins are interesting targets for future vaccine strategies as they are highly conserved, abundant, and immunogenic.