Refine
Document Type
- Article (9)
Language
- English (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- - (9)
- human (3)
- liver (3)
- gene expression (2)
- intestine (2)
- organic cation transporter 1 (2)
- protein abundance (2)
- <i>SLC16A1</i> (1)
- CYP1A1 (1)
- CYP1A2 (1)
Institute
Publisher
- MDPI (7)
- Frontiers Media S.A. (2)
Salivary glands provide secretory functions, including secretion of xenobiotics and among
them drugs. However, there is no published information about protein abundance of drug transporters
measured using reliable protein quantification methods. Therefore, mRNA expression and absolute
protein content of clinically relevant ABC (n = 6) and SLC (n = 15) family member transporters in the
human parotid gland, using the qRT-PCR and liquid chromatography-tandem mass spectrometry
(LC−MS/MS) method, were studied. The abundance of nearly all measured proteins ranged between
0.04 and 0.45 pmol/mg (OCT3 > MRP1 > PEPT2 > MRP4 > MATE1 > BCRP). mRNAs of ABCB1,
ABCC2, ABCC3, SLC10A1, SLC10A2, SLC22A1, SLC22A5, SLC22A6, SLC22A7, SLC22A8, SLCO1A2,
SLCO1B1, SLCO1B3 and SLCO2B1 were not detected. The present study provides, for the first time,
information about the protein abundance of membrane transporters in the human parotid gland,
which could further be used to define salivary bidirectional transport (absorption and secretion)
mechanisms of endogenous compounds and xenobiotics.
Background: Unwanted drug-drug interactions (DDIs), as caused by the upregulation of clinically relevant drug metabolizing enzymes and transporter proteins in intestine and liver, have the potential to threaten the therapeutic efficacy and safety of drugs. The molecular mechanism of this undesired but frequently occurring scenario of polypharmacy is based on the activation of nuclear receptors such as the pregnane X receptor (PXR) or the constitutive androstane receptor (CAR) by perpetrator agents such as rifampin, phenytoin or St. John’s wort. However, the expression pattern of nuclear receptors in human intestine and liver remains uncertain, which makes it difficult to predict the extent of potential DDIs. Thus, it was the aim of this study to characterize the gene expression and protein abundance of clinically relevant nuclear receptors, i.e., the aryl hydrocarbon receptor (AhR), CAR, farnesoid X receptor (FXR), glucocorticoid receptor (GR), hepatocyte nuclear factor 4 alpha (HNF4α), PXR and small heterodimer partner (SHP), in the aforementioned organs. Methods: Gene expression analysis was performed by quantitative real-time PCR of jejunal, ileal, colonic and liver samples from eight human subjects. In parallel, a targeted proteomic method was developed and validated in order to determine the respective protein amounts of nuclear receptors in human intestinal and liver samples. The LC-MS/MS method was validated according to the current bioanalytical guidelines and met the criteria regarding linearity (0.1–50 nmol/L), within-day and between-day accuracy and precision, as well as the stability criteria. Results: The developed method was successfully validated and applied to determine the abundance of nuclear receptors in human intestinal and liver samples. Gene expression and protein abundance data demonstrated marked differences in human intestine and liver. On the protein level, only AhR and HNF4α could be detected in gut and liver, which corresponds to their highest gene expression. In transfected cell lines, PXR and CAR could be quantified. Conclusions: The substantially different expression pattern of nuclear receptors in human intestinal and liver tissue may explain the different extent of unwanted DDIs in the dependence on the administration route of drugs.
Membrane monocarboxylate transporter 1 (SLC16A1/MCT1) plays an important role in
hepatocyte homeostasis, as well as drug handling. However, there is no available information
about the impact of liver pathology on the transporter levels and function. The study was aimed to
quantify SLC16A1 mRNA (qRT-PCR) and MCT1 protein abundance (liquid chromatography–tandem
mass spectrometry (LC¬¬–MS/MS)) in the livers of patients diagnosed, according to the standard
clinical criteria, with hepatitis C, primary biliary cirrhosis, primary sclerosing hepatitis, alcoholic liver
disease (ALD), and autoimmune hepatitis. The stage of liver dysfunction was classified according to
Child–Pugh score. Downregulation of SLC16A1/MCT1 levels was observed in all liver pathology
states, significantly for ALD. The progression of liver dysfunction, from Child–Pugh class A to C,
involved the gradual decline in SLC16A1 mRNA and MCT1 protein abundance, reaching a clinically
significant decrease in class C livers. Reduced levels of MCT1 were associated with significant
intracellular lactate accumulation. The MCT1 transcript and protein did not demonstrate significant
correlations regardless of the liver pathology analyzed, as well as the disease stage, suggesting
posttranscriptional regulation, and several microRNAs were found as potential regulators of MCT1
abundance. MCT1 membrane immunolocalization without cytoplasmic retention was observed in all
studied liver pathologies. Overall, the study demonstrates that SLC16A1/MCT1 is involved in liver
pathology, especially in ALD
Liver diseases are important causes of morbidity and mortality worldwide. The aim of
this study was to identify differentially expressed microRNAs (miRNAs), target genes, and key
pathways as innovative diagnostic biomarkers in liver patients with different pathology and functional
state. We determined, using RT-qPCR, the expression of 472 miRNAs in 125 explanted livers from
subjects with six different liver pathologies and from control livers. ANOVA was employed to
obtain differentially expressed miRNAs (DEMs), and miRDB (MicroRNA target prediction database)
was used to predict target genes. A miRNA–gene differential regulatory (MGDR) network was
constructed for each condition. Key miRNAs were detected using topological analysis. Enrichment
analysis for DEMs was performed using the Database for Annotation, Visualization, and Integrated
Discovery (DAVID). We identified important DEMs common and specific to the different patient
groups and disease progression stages. hsa-miR-1275 was universally downregulated regardless
the disease etiology and stage, while hsa-let-7a*, hsa-miR-195, hsa-miR-374, and hsa-miR-378 were
deregulated. The most significantly enriched pathways of target genes controlled by these miRNAs
comprise p53 tumor suppressor protein (TP53)-regulated metabolic genes, and those involved in
regulation of methyl-CpG-binding protein 2 (MECP2) expression, phosphatase and tensin homolog
(PTEN) messenger RNA (mRNA) translation and copper homeostasis. Our findings show a novel
panel of deregulated miRNAs in the liver tissue from patients with different liver pathologies. These
miRNAs hold potential as biomarkers for diagnosis and staging of liver diseases.
Transmembrane drug transport in hepatocytes is one of the major determinants of drug pharmacokinetics. In the present study, ABC transporters (P-gp, MRP1, MRP2, MRP3, MRP4, BCRP, and BSEP) and SLC transporters (MCT1, NTCP, OAT2, OATP1B1, OATP1B3, OATP2B1, OCT1, and OCT3) were quantified for protein abundance (LC-MS/MS) and mRNA levels (qRT-PCR) in hepatitis C virus (HCV)-infected liver samples from the Child–Pugh class A (n = 30), B (n = 21), and C (n = 7) patients. Protein levels of BSEP, MRP3, MCT1, OAT2, OATP1B3, and OCT3 were not significantly affected by HCV infection. P-gp, MRP1, BCRP, and OATP1B3 protein abundances were upregulated, whereas those of MRP2, MRP4, NTCP, OATP2B1, and OCT1 were downregulated in all HCV samples. The observed changes started to be seen in the Child–Pugh class A livers, i.e., upregulation of P-gp and MRP1 and downregulation of MRP2, MRP4, BCRP, and OATP1B3. In the case of NTCP, OATP2B1, and OCT1, a decrease in the protein levels was observed in the class B livers. In the class C livers, no other changes were noted than those in the class A and B patients. The results of the study demonstrate that drug transporter protein abundances are affected by the functional state of the liver in hepatitis C patients.
Organic cation transporter 1 (OCT1, SLC22A1) is localized in the sinusoidal membrane of human hepatocytes and mediates hepatic uptake of weakly basic or cationic drugs and endogenous compounds. Common amino acid substitutions in OCT1 were associated with altered pharmacokinetics and efficacy of drugs like sumatriptan and fenoterol. Recently, the common splice variant rs35854239 has also been suggested to affect OCT1 function. rs35854239 represents an 8 bp duplication of the donor splice site at the exon 7-intron 7 junction. Here we quantified the extent to which this duplication affects OCT1 splicing and, as a consequence, the expression and the function of OCT1. We used pyrosequencing and deep RNA-sequencing to quantify the effect of rs35854239 on splicing after minigene expression of this variant in HepG2 and Huh7 cells and directly in human liver samples. Further, we analyzed the effects of rs35854239 on OCT1 mRNA expression in total, localization and activity of the resulting OCT1 protein, and on the pharmacokinetics of sumatriptan and fenoterol. The 8 bp duplication caused alternative splicing in 38% (deep RNA-sequencing) to 52% (pyrosequencing) of the minigene transcripts when analyzed in HepG2 and Huh7 cells. The alternatively spliced transcript encodes for a truncated protein that after transient transfection in HEK293 cells was not localized in the plasma membrane and was not able to transport the OCT1 model substrate ASP+. In human liver, however, the alternatively spliced OCT1 transcript was detectable only at very low levels (0.3% in heterozygous and 0.6% in homozygous carriers of the 8 bp duplication, deep RNA-sequencing). The 8 bp duplication was associated with a significant reduction of OCT1 expression in the human liver, but explained only 9% of the general variability in OCT1 expression and was not associated with significant changes in the pharmacokinetics of sumatriptan and fenoterol. Therefore, the rs35854239 variant only partially changes splicing, causing moderate changes in OCT1 expression and may be of only limited therapeutic relevance.
Intestinal transporter proteins are known to affect the pharmacokinetics and in turn the efficacy and safety of many orally administered drugs in a clinically relevant manner. This knowledge is especially well-established for intestinal ATP-binding cassette transporters such as P-gp and BCRP. In contrast to this, information about intestinal uptake carriers is much more limited although many hydrophilic or ionic drugs are not expected to undergo passive diffusion but probably require specific uptake transporters. A transporter which is controversially discussed with respect to its expression, localization and function in the human intestine is the organic cation transporter 1 (OCT1). This review article provides an up-to-date summary on the available data from expression analysis as well as functional studies in vitro, animal findings and clinical observations. The current evidence suggests that OCT1 is expressed in the human intestine in small amounts (on gene and protein levels), while its cellular localization in the apical or basolateral membrane of the enterocytes remains to be finally defined, but functional data point to a secretory function of the transporter at the basolateral membrane. Thus, OCT1 should not be considered as a classical uptake transporter in the intestine but rather as an intestinal elimination pathway for cationic compounds from the systemic circulation.