Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- - (4)
- allergy (2)
- <i>S. aureus</i> (1)
- Airway inflammation (1)
- Allergie (1)
- Bacterial allergens (1)
- CD4 (1)
- Cystic fibrosis (1)
- IL-33 (1)
- IgE (1)
Publisher
- Frontiers Media S.A. (3)
- MDPI (1)
Staphylococcus aureus (S. aureus) can secrete a broad range of virulence factors, among which staphylococcal serine protease-like proteins (Spls) have been identified as bacterial allergens. The S. aureus allergen serine protease-like protein D (SplD) induces allergic asthma in C57BL/6J mice through the IL-33/ST2 signaling axis. Analysis of C57BL/6J, C57BL/6N, CBA, DBA/2, and BALB/c mice treated with intratracheal applications of SplD allowed us to identify a frameshift mutation in the serine (or cysteine) peptidase inhibitor, clade A, and member 3I (Serpina3i) causing a truncated form of SERPINA3I in BALB/c, CBA, and DBA/2 mice. IL-33 is a key mediator of SplD-induced immunity and can be processed by proteases leading to its activation or degradation. Full-length SERPINA3I inhibits IL-33 degradation in vivo in the lungs of SplD-treated BALB/c mice and in vitro by direct inhibition of mMCP-4. Collectively, our results establish SERPINA3I as a regulator of IL-33 in the lungs following exposure to the bacterial allergen SplD, and that the asthma phenotypes of mouse strains may be strongly influenced by the observed frameshift mutation in Serpina3i. The analysis of this protease-serpin interaction network might help to identify predictive biomarkers for type-2 biased airway disease in individuals colonized by S. aureus.
Our modern understanding of the hygiene hypothesis is that bacteria are not only the cause of disease but also essential for a healthy immune response and regulation. Varied microbial exposure prenatally and in early childhood protects us from pathological immune reactions such as autoimmune diseases and allergies. Against this background, the hypothesis that bacteria can act as allergens appears paradoxical. Nevertheless, there is growing evidence that Staphylococcus aureus (S. aureus) is associated with allergic reactions and serine protease-like proteins (Spls) produced by S. aureus have been identified as pacemakers of allergic reactions. To open prospects for treatment or causal therapy in patients at risk, the underlying mechanism of allergy induction by Spls was studied, focusing on the IL-33 pathway in airway inflammation. In a murine asthma model C57BL/6 J wild-type mice were repeatedly exposed to SplD via intratracheal application. After two weeks a Th2-biased inflammatory response was observed in the airways: IL-33 and eotaxin production, eosinophilia, bronchial hyperreactivity, and goblet cell hyperplasia. Blocking IL-33 activity with its soluble receptor ST2 counteracted these effects: significantly decreased numbers of eosinophils, IL-13+ type 2 ILCs, IL-13+CD4+ T cells as well as reduced IL-5 and IL-13 production by lymph node cells were observed. This study indicates that SplD induces allergic airway inflammation via the IL-33/ST2 axis. IL-33 upregulation was not accompanied by cell death, which indicates that IL-33 may not be passively released by dying cells but actively secreted by the airway epithelium. Future identification of the physiological substrates of the Spls may help to shed light on the source of IL-33 in SplD-induced airway inflammation.
While the causes of allergy induction by S. aureus Spls were addressed by investigating the underlying mechanism, the consequences of this were also of interest: Does the pro-allergenic response to S. aureus affect patients exposed to S. aureus in their airways? Therefore, the humoral and cellular immune response against Spls was studied in cystic fibrosis (CF) patients who are more frequently colonized with S. aureus than the healthy population and suffer from frequent recurrent airway infections. In this patient cohort a Th2 shift of the Spl-specific immune response became evident, including high Spl-specific serum IgE levels, strong induction of Th2 cell differentiation and production of type 2 cytokines following ex vivo stimulation with recombinant Spls. The observed response seems to be specific for Spls rather than being a general feature of S. aureus proteases since other putative allergens of S. aureus (ScpA, SspB) did not show increased IgE binding in CF sera. The Th2-driven immune response might impede antibacterial clearance and worsen the clinical picture. Larger clinical studies are needed to validate this notion by correlating the anti-S. aureus immune response with clinical parameters and testing new therapy options.
These results and findings shed light on a novel, possibly underestimated facet of the immune response against S. aureus and give impetus for further research on bacterial allergens in general, reaching beyond the species S. aureus.
Staphylococcus aureus can cause life-threatening diseases, and hospital- as well as community-associated antibiotic-resistant strains are an emerging global public health problem. Therefore, prophylactic vaccines or immune-based therapies are considered as alternative treatment opportunities. To develop such novel treatment approaches, a better understanding of the bacterial virulence and immune evasion mechanisms and their potential effects on immune-based therapies is essential. One important staphylococcal virulence factor is alpha-toxin, which is able to disrupt the epithelial barrier in order to establish infection. In addition, alpha-toxin has been reported to modulate other cell types including immune cells. Since CD4+ T cell-mediated immunity is required for protection against S. aureus infection, we were interested in the ability of alpha-toxin to directly modulate CD4+ T cells. To address this, murine naïve CD4+ T cells were differentiated in vitro into effector T cell subsets in the presence of alpha-toxin. Interestingly, alpha-toxin induced death of Th1-polarized cells, while cells polarized under Th17 conditions showed a high resistance toward increasing concentrations of this toxin. These effects could neither be explained by differential expression of the cellular alpha-toxin receptor ADAM10 nor by differential activation of caspases, but might result from an increased susceptibility of Th1 cells toward Ca2+-mediated activation-induced cell death. In accordance with the in vitro findings, an alpha-toxin-dependent decrease of Th1 and concomitant increase of Th17 cells was observed in vivo during S. aureus bacteremia. Interestingly, corresponding subsets of innate lymphoid cells and γδ T cells were similarly affected, suggesting a more general effect of alpha-toxin on the modulation of type 1 and type 3 immune responses. In conclusion, we have identified a novel alpha-toxin-dependent immunomodulatory strategy of S. aureus, which can directly act on CD4+ T cells and might be exploited for the development of novel immune-based therapeutic approaches to treat infections with antibiotic-resistant S. aureus strains.
In cystic fibrosis (CF) infectious and allergic airway inflammation cause pulmonary exacerbations that destroy the lungs. Staphylococcus aureus is a common long-term colonizer and cause of recurrent airway infections in CF. The pathogen is also associated with respiratory allergy; especially the staphylococcal serine protease-like proteins (Spls) can induce type 2 immune responses in humans and mice. We measured the serum IgE levels specific to 7 proteases of S. aureus by ELISA, targeting 5 Spls (76 CF patients and 46 controls) and the staphopains A and B (16 CF patients and 46 controls). Then we compared cytokine release and phenotype of T cells that had been stimulated with Spls between 5 CF patients and 5 controls. CF patients had strongly increased serum IgE binding to all Spls but not to the staphopains. Compared to healthy controls, their Spl-stimulated T cells released more type 2 cytokines (IL-4, IL-5, IL-13) and more IL-6 with no difference in the secretion of type 1- or type 3 cytokines (IFNγ, IL-17A, IL-17F). IL-10 production was low in CF T cells. The phenotype of the Spl-exposed T cells shifted towards a Th2 or Th17 profile in CF but to a Th1 profile in controls. Sensitization to S. aureus Spls is common in CF. This discovery could explain episodes of allergic inflammation of hitherto unknown causation in CF and extend the diagnostic and therapeutic portfolio.