Refine
Document Type
- Article (5)
- Doctoral Thesis (1)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- - (2)
- Adhesion (1)
- BCL11B (1)
- Biophysikalische Chemie (1)
- CCHC zinc finger (1)
- Collagen (1)
- Fibronectin (1)
- Integrin (1)
- Molecular dynamics simulation (1)
- Molekulardynamik (1)
Institute
Publisher
- MDPI (2)
- Springer Nature (1)
- Wiley (1)
Unveiling the N-Terminal Homodimerization of BCL11B by Hybrid Solvent Replica-Exchange Simulations
(2021)
Transcription factors play a crucial role in regulating biological processes such as cell
growth, differentiation, organ development and cellular signaling. Within this group, proteins
equipped with zinc finger motifs (ZFs) represent the largest family of sequence-specific DNA-binding
transcription regulators. Numerous studies have proven the fundamental role of BCL11B for a
variety of tissues and organs such as central nervous system, T cells, skin, teeth, and mammary
glands. In a previous work we identified a novel atypical zinc finger domain (CCHC-ZF) which
serves as a dimerization interface of BCL11B. This domain and formation of the dimer were shown
to be critically important for efficient regulation of the BCL11B target genes and could therefore
represent a promising target for novel drug therapies. Here, we report the structural basis for
BCL11B–BCL11B interaction mediated by the N-terminal ZF domain. By combining structure
prediction algorithms, enhanced sampling molecular dynamics and fluorescence resonance energy
transfer (FRET) approaches, we identified amino acid residues indispensable for the formation of
the single ZF domain and directly involved in forming the dimer interface. These findings not only
provide deep insight into how BCL11B acquires its active structure but also represent an important
step towards rational design or selection of potential inhibitors.
Understanding the fundamental mechanisms in the extracellular matrix of cells (ECM) is crucial for the development of drugs and biomaterials. Therefore, an atomistic model of the extracellular matrix is a cost-efficient way to observe influences of drugs, test the effect of mutations or misfolds in proteins or study the properties of fibril or network-forming peptides.
With this thesis, a refined molecular model of an adhesion complex is proposed that contains collagen, fibronectin and the cell receptor integrin. During the building of the model, major new insights are given for each of these proteins and a powerful protein-folding algorithm is
developed.
Unlike the native surface of the implant material (Ti6Al4V), oxidation with H2O2 leads to increased binding of the effective antimicrobial agent poly(hexamethylene) biguanide [PHMB]. However, treating with NaOH instead results in an even higher PHMB mass coverage. After oxidation with H2O2, strong differences in the PHMB adsorption capability between polished and corundum-blasted surfaces appear, indicating a roughness dependence. After NaOH treatment, no such effect was observed. The wetting properties of specimens treated with either H2O2 or NaOH prior to PHMB exposure clearly varied. To unravel the nature of this interaction, widespread in silico and in vitro experiments were performed. Methods: By X-ray photoelectron spectroscopy, scanning electron microscopy, water contact angle measurements and MD simulations, we characterized the interplay between the polycationic antimicrobial agent and the implant surface. A theoretical model for PHMB micelles is tested for its wetting properties and compared to carbon contaminated TiO2. In addition, quantitation of anionic functional group equivalents, the binding properties of PHMB with blocked amino end-group, and the ability to bind chlorhexidine digluconate (CHG) were investigated. Ultimately, the capability of osteoblasts to build calcium apatite, and the activity of alkaline phosphatase on PHMB coated specimens, were determined. Results: Simulated water contact angles on carbon contaminated TiO2 surfaces and PHMB micelle models reveal little influence of PHMB on the wetting properties and point out the major influence of remaining and recovering contamination from ambient air. Testing PHMB adsorption beyond the critical micelle concentration and subsequent staining reveals an island-like pattern with H2O2 as compared to an evenly modified surface with NaOH. Both CHG and PHMB, with blocked amino end groups, were adsorbed on the treated surfaces, thus negating the significant influence of PHMB’s terminal groups. The ability of osteoblasts to produce calcium apatite and alkaline phosphatase is not negatively impaired for PHMB mass coverages up to 8 μg/specimen. Conclusion: Differences in PHMB adsorption are triggered by the number of anionic groups and carbon contaminants, both of which depend on the specimen pre-treatment. With more PHMB covering, the implant surface is protected against the capture of new contamination from the ambient air, thus building a robust antimicrobial and biocompatible surface coating.
Beta-2-glycoprotein I (β2GPI) is a blood protein and the major antigen in the autoimmune disorder
antiphospholipid syndrome (APS). β2GPI exists mainly in closed or open conformations and
comprises of 11 disulfides distributed across five domains. The terminal Cys288/Cys326 disulfide
bond at domain V has been associated with different cysteine redox states. The role of this disulfide
bond in conformational dynamics of this protein has not been investigated so far. Here, we report
on the enzymatic driven reduction by thioredoxin-1 (recycled by Tris(2-carboxyethyl)phosphine;
TCEP) of β2GPI. Specific reduction was demonstrated by Western blot and mass spectrometry
analyses confirming majority targeting to the fifth domain of β2GPI. Atomic force microscopy images
suggested that reduced β2GPI shows a slightly higher proportion of open conformation and is more
flexible compared to the untreated protein as confirmed by modelling studies. We have determined a
strong increase in the binding of pathogenic APS autoantibodies to reduced β2GPI as demonstrated
by ELISA. Our study is relevant for understanding the effect of β2GPI reduction on the protein
structure and its implications for antibody binding in APS patients.
Molecular dynamics simulations to the bidirectional adhesion signaling pathway of integrin αVβ3
(2020)
Abstract
The bidirectional force transmission process of integrin through the cell membrane is still not well understood. Several possible mechanisms have been discussed in literature on the basis of experimental data, and in this study, we investigate these mechanisms by free and steered molecular dynamics simulations. For the first time, constant velocity pulling on the complete integrin molecule inside a dipalmitoyl‐phosphatidylcholine membrane is conducted. From the results, the most likely mechanism for inside‐out and outside‐in signaling is the switchblade model with further separation of the transmembrane helices.
Drug-induced activation of integrin alpha IIb beta 3 leads to minor localized structural changes
(2019)
Integrins are transmembrane proteins involved in hemostasis, wound healing, immunity and cancer. In response to intracellular signals and ligand binding, integrins adopt different conformations: the bent (resting) form; the intermediate extended form; and the ligand-occupied active form. An integrin undergoing such conformational dynamics is the heterodimeric platelet receptor αIIbβ3. Although the dramatic rearrangement of the overall structure of αIIbβ3 during the activation process is potentially related to changes in the protein secondary structure, this has not been investigated so far in a membrane environment. Here we examine the Mn2+- and drug-induced activation of αIIbβ3 and the impact on the structure of this protein reconstituted into liposomes. By quartz crystal microbalance with dissipation monitoring and activation assays we show that Mn2+ induces binding of the conformation-specific antibody PAC-1, which only recognizes the extended, active integrin. Circular dichroism pectroscopy reveals, however, that Mn2+-treatment does not induce major secondary structural changes of αIIbβ3. Similarly, we found that treatment with clinically relevant drugs (e.g. quinine) led to the activation of αIIbβ3 without significant changes in protein secondary structure. Molecular dynamics simulation studies revealed minor local changes in the beta-sheet probability of several extracellular domains of the integrin. Our experimental setup represents a new approach to study transmembrane proteins, especially integrins, in a membrane environment and opens a new way for testing drug binding to integrins under clinically relevant conditions.