Refine
Document Type
- Article (19)
Language
- English (19)
Has Fulltext
- yes (19)
Is part of the Bibliography
- no (19)
Keywords
- - (14)
- climate change (5)
- boreal forest (3)
- dendrochronology (3)
- dendrometer (3)
- Europe (2)
- climate–growth relationships (2)
- tree-ring width (2)
- tree-rings (2)
- treeline (2)
Publisher
- Frontiers Media S.A. (9)
- Wiley (4)
- MDPI (3)
- IOP Publishing (2)
- Nature Publishing Group (1)
Abstract
Climate change is increasing the frequency and intensity of drought events in many boreal forests. Trees are sessile organisms with a long generation time, which makes them vulnerable to fast climate change and hinders fast adaptations. Therefore, it is important to know how forests cope with drought stress and to explore the genetic basis of these reactions. We investigated three natural populations of white spruce (Picea glauca) in Alaska, located at one drought‐limited and two cold‐limited treelines with a paired plot design of one forest and one treeline plot. We obtained individual increment cores from 458 trees and climate data to assess dendrophenotypes, in particular the growth reaction to drought stress. To explore the genetic basis of these dendrophenotypes, we genotyped the individual trees at 3000 single nucleotide polymorphisms in candidate genes and performed genotype–phenotype association analysis using linear mixed models and Bayesian sparse linear mixed models. Growth reaction to drought stress differed in contrasting treeline populations. Therefore, the populations are likely to be unevenly affected by climate change. We identified 40 genes associated with dendrophenotypic traits that differed among the treeline populations. Most genes were identified in the drought‐limited site, indicating comparatively strong selection pressure of drought‐tolerant phenotypes. Contrasting patterns of drought‐associated genes among sampled sites and in comparison to Canadian populations in a previous study suggest that drought adaptation acts on a local scale. Our results highlight genes that are associated with wood traits which in turn are critical for the establishment and persistence of future forests under climate change.
Abstract
In the 21st century, most of the world’s glaciers are expected to retreat due to further global warming. The range of this predicted retreat varies widely as a result of uncertainties in climate and glacier models. To calibrate and validate glacier models, past records of glacier mass balance are necessary, which often only span several decades. Long-term reconstructions of glacier mass balance could increase the precision of glacier models by providing the required calibration data. Here we show the possibility of applying shrub growth increments as an on-site proxy for glacier summer mass balance, exemplified by Salix shrubs in Finse, Norway. We further discuss the challenges which this method needs to meet and address the high potential of shrub growth increments for reconstructing glacier summer mass balance in remote areas.
Tree growth at northern boreal treelines is generally limited by summer temperature, hence tree rings serve as natural archives of past climatic conditions. However, there is increasing evidence that a changing summer climate as well as certain micro-site conditions can lead to a weakening or loss of the summer temperature signal in trees growing in treeline environments. This phenomenon poses a challenge to all applications relying on stable temperature-growth relationships such as temperature reconstructions and dynamic vegetation models. We tested the effect of differing ecological and climatological conditions on the summer temperature signal of Scots pine at its northern distribution limits by analyzing twelve sites distributed along a 2200 km gradient from Finland to Western Siberia (Russia). Two frequently used proxies in dendroclimatology, ring width and maximum latewood density, were correlated with summer temperature for the period 1901–2013 separately for (i) dry vs. wet micro-sites and (ii) years with dry/warm vs. wet/cold climate regimes prevailing during the growing season. Differing climate regimes significantly affected the temperature signal of Scots pine at about half of our sites: While correlations were stronger in wet/cold than in dry/warm years at most sites located in Russia, differing climate regimes had only little effect at Finnish sites. Both tree-ring proxies were affected in a similar way. Interestingly, micro-site differences significantly affected absolute tree growth, but had only minor effects on the climatic signal at our sites. We conclude that, despite the treeline-proximal location, growth-limiting conditions seem to be exceeded in dry/warm years at most Russian sites, leading to a weakening or loss of the summer temperature signal in Scots pine here. With projected temperature increase, unstable summer temperature signals in Scots pine tree rings might become more frequent, possibly affecting dendroclimatological applications and related fields.
Coastal dunes near the Baltic Sea are often stabilized by Scots pine forests and are characterized by a mild climate. These ecosystems are affected by water shortages and might be influenced by climate extremes. Considering future climate change, utilizing tree rings could help assess the role of climate extremes on coastal forest growth. We used superposed epoch analysis to study Scots pine responses to droughts and cold winters, with focus on frequency, timing, and duration. We measured ring widths (RW) and latewood blue intensity (LBI) on samples extracted from trees growing at dune ridge and bottom microsites at the south Baltic Sea. At the regional scale, we observed some similarities in tree responses to both extremes between RW and LBI within the same microsite type and region. At the local scale, RW and LBI were more frequently influenced by cold winters than droughts. RW and LBI from dune ridges were more frequently influenced by droughts than RW and LBI from dune bottoms. LBI from both microsites was more often influenced by droughts than RW. RW and LBI from both microsites were similarly often influenced by cold winters. At both scales, the response time of RW and LBI after droughts predominantly lagged by one year, while cold winters were recorded in the same year. The typical duration of growth reductions after both extremes was one year for both RW and LBI. Our study indicates that Scots pine from the Baltic Sea region is sensitive to climate extremes, especially cold winters.
Determining the effect of a changing climate on tree growth will ultimately depend on our understanding of wood formation processes and how they can be affected by environmental conditions. In this context, monitoring intra-annual radial growth with high temporal resolution through point dendrometers has often been used. Another widespread approach is the microcoring method to follow xylem and phloem formation at the cellular level. Although both register the same biological process (secondary growth), given the limitations of each method, each delivers specific insights that can be combined to obtain a better picture of the process as a whole. To explore the potential of visualizing combined dendrometer and histological monitoring data and scrutinize intra-annual growth data on both dimensions (dendrometer → continuous; microcoring → discrete), we developed DevX (Dendrometer vs. Xylogenesis), a visualization application using the “Shiny” package in the R programming language. The interactive visualization allows the display of dendrometer curves and the overlay of commonly used growth model fits (Gompertz and Weibull) as well as the calculation of wood phenology estimates based on these fits (growth onset, growth cessation, and duration). Furthermore, the growth curves have interactive points to show the corresponding histological section, where the amount and development stage of the tissues at that particular time point can be observed. This allows to see the agreement of dendrometer derived phenology and the development status at the cellular level, and by this help disentangle shrinkage and swelling due to water uptake from actual radial growth. We present a case study with monitoring data for Acer pseudoplatanus L., Fagus sylvatica L., and Quercus robur L. trees growing in a mixed stand in northeastern Germany. The presented application is an example of the innovative and easy to access use of programming languages as basis for data visualization, and can be further used as a learning tool in the topic of wood formation and its ecology. Combining continuous dendrometer data with the discrete information from histological-sections provides a tool to identify active periods of wood formation from dendrometer series (calibrate) and explore monitoring datasets.
Coastal sand dunes near the Baltic Sea are a dynamic environment marking the boundary between land and sea and oftentimes covered by Scots pine (Pinus sylvestris L.) forests. Complex climate-environmental interactions characterize these ecosystems and largely determine the productivity and state of these coastal forests. In the face of future climate change, understanding interactions between coastal tree growth and climate variability is important to promote sustainable coastal forests. In this study, we assessed the effect of microsite conditions on tree growth and the temporal and spatial variability of the relationship between climate and Scots pine growth at nine coastal sand dune sites located around the south Baltic Sea. At each site, we studied the growth of Scots pine growing at microsites located at the ridge and bottom of a dune and built a network of 18 ring-width and 18 latewood blue intensity chronologies. Across this network, we found that microsite has a minor influence on ring-width variability, basal area increment, latewood blue intensity, and climate sensitivity. However, at the local scale, microsite effects turned out to be important for growth and climate sensitivity at some sites. Correlation analysis indicated that the strength and direction of climate-growth responses for the ring-width and blue intensity chronologies were similar for climate variables over the 1903–2016 period. A strong and positive relationship between ring-width and latewood blue intensity chronologies with winter-spring temperature was detected at local and regional scales. We identified a relatively strong, positive influence of winter-spring/summer moisture availability on both tree-ring proxies. When climate-growth responses between two intervals (1903–1959, 1960–2016) were compared, the strength of growth responses to temperature and moisture availability for both proxies varied. More specifically, for the ring-width network, we identified decreasing temperature-growth responses, which is in contrast to the latewood blue intensity network, where we documented decreasing and increasing temperature-growth relationships in the north and south respectively. We conclude that coastal Scots pine forests are primarily limited by winter-spring temperature and winter-spring/summer drought despite differing microsite conditions. We detected some spatial and temporal variability in climate-growth relationships that warrant further investigation.
Changes in the environment will alter the growth rate of trees and forests. Different disciplines assess such growth rates differently, for example, with tree-ring width data, forest inventories or with carbon-flux data from eddy covariance towers. Such data is used to quantify forests biomass increment, forest’s carbon sequestration or to reconstruct environmental variables before instrumental records. However, raw measurement data is typically not considered to be representative for the average growth rate of trees or forests. Depending on the research question, the effects of certain environmental variables or effects of tree and forest structure have to be removed first. It can be challenging to define and quantify a growth trend that can answer a specific research question because trees and forests grow and respond to environmental change in multiple ways simultaneously, for example, with altered radial increment, height growth, and stand density. Further challenges pose time-lagged feedback loops, for example, between height and radial increment or between stand density and radial increment. Generally, different environments will lead to different tree and forest structures, but because of tree’s longevity this adaptation to the new environment will take decades or even centuries. Consequently, there can be an offset between the present forest structure and what we term the potential natural forest (PNF): Similar to the potential natural vegetation (PNV), the PNF represents that forest that would develop under the current environmental conditions in the absence of human intervention. Because growth rates are affected by the tree and forest structure, growth-trend estimates will differ between the present and the potential forest. Consequently, if the legacy effects of the past are not of interest, the PNF is the theoretical baseline to correct and estimate growth trends.
In micro-densitometry of wood it is standard procedure to extract resin and other soluble compounds before X-ray analysis to eliminate the influence of these extractives on wood-density. Dendrochemical studies using X-ray fluorescence analysis on the other hand are commonly conducted without previous extraction. However, it is well known that translocation processes of elements during heartwood formation in trees or (temporal) differences in sap content of wood samples can influence dendrochemical element profiles. This might bias environmental signals stored in time series of element concentrations in wood proxies. We hypothesize that metals tightly bound to cell walls show a more robust proxy potential for environmental conditions than easily translocated ones. To eliminate the noise of these soluble substances in wood elemental time series, their extraction prior to analysis might be necessary. In our study we tested the effect of different solvents (water, alcohol, and acetone) and different extraction times on elemental time series of three tree species with differing wood structure (Pinus sylvestris; Quercus robur and Populus tremula). Micro-XRF analysis was conducted on nine replicates per species using an ITRAX-Multiscanner. A set of elements commonly detected in wood (S, Cl, K, Ca, Ti, Mn, Fe, and Ni) was analysed at high resolution before and after several extraction runs. Besides lowering their levels, extraction did not significantly change the temporal trends for most elements. However, for some elements, e.g., Potassium, Chlorine or Manganese, especially the water extraction led to significant decreases in concentrations and altered temporal trends. Apparently the dipole effect of water produced the strongest extraction power of all three solvents. In addition we observed a dependency of extraction intensity from wood density which differed between wood types. Our results help in interpreting and evaluating element profiles and mark a step forward in establishing dendrochemistry as a robust proxy in dendro-environmental research.
Direct and Indirect Effects of Environmental Limitations on White Spruce Xylem Anatomy at Treeline
(2021)
Treeline ecosystems are of great scientific interest to study the effects of limiting environmental conditions on tree growth. However, tree growth is multidimensional, with complex interactions between height and radial growth. In this study, we aimed to disentangle effects of height and climate on xylem anatomy of white spruce [Picea glauca (Moench) Voss] at three treeline sites in Alaska; i.e., one warm and drought-limited, and two cold, temperature-limited. To analyze general growth differences between trees from different sites, we used data on annual ring width, diameter at breast height (DBH), and tree height. A representative subset of the samples was used to investigate xylem anatomical traits. We then used linear mixed-effects models to estimate the effects of height and climatic variables on our study traits. Our study showed that xylem anatomical traits in white spruce can be directly and indirectly controlled by environmental conditions: hydraulic-related traits seem to be mainly influenced by tree height, especially in the earlywood. Thus, they are indirectly driven by environmental conditions, through the environment’s effects on tree height. Traits related to mechanical support show a direct response to environmental conditions, mainly temperature, especially in the latewood. These results highlight the importance of assessing tree growth in a multidimensional way by considering both direct and indirect effects of environmental forcing to better understand the complexity of tree growth responses to the environment.