Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- - (1)
- Elektronendichte (1)
- Mikrowelleninterferometer (1)
- Mikrowellenplasma (1)
- Plasmadiagnostik (1)
- Reflektometer (1)
- antimicrobial (1)
- atmospheric pressure (1)
- decontamination (1)
- ion chromatography (1)
Institute
Publisher
- MDPI (1)
Die Forschung an mikrowelleninduzierten Atmosphärendruckplasmen am INP führte zu verschiedenen potentiellen Applikationen. Dabei besitzt die mikrobiologische Dekontamination sowohl von thermolabilen Medizinprodukten als auch von Lebensmitteln schon zum jetzigen Zeitpunkt ein hohes industrielles Anwendungspotential. Den aufgeführten Anwendungen gemeinsam ist, dass für eine erfolgreiche Weiterentwicklung der Prozesse, sowie der Plasmaquelle, ein grundlegendes Verständnis der vorliegenden dynamischen Mikrowellenplasmawechselwirkung notwendig ist. Durch den begrenzten diagnostischen Zugang der zu untersuchenden Plasmaquelle wird ein kombinierter Ansatz aus diagnostischen Methoden und Modellierung gewählt. Die Entladung wird in Argon bei reduziertem Druck (ab 10 mbar) zur Vereinfachung des Modells betrieben. Daher musste die Plasmaquelle für diesen Einsatz weiterentwickelt werden. Dieses beinhaltet die Neuauslegung der Prozesswärmeabfuhr, auf Grund der nicht oder nur teilweisen Anwendbarkeit von etablierten Verfahren im Atmosphärendruck (hohe Gasflüsse, Wasserkühlung). Die Plasmamikrowellenwechselwirkung dieser Quelle ist anschließend mit Methoden zur Charakterisierung des Plasmas und des Mikrowellenfeldes für unterschiedliche Arbeitspunkte in Druck und Leistung untersucht worden. Zur Bestimmung der Elektronendichte des Plasmas wurde ein frequenzvariables Mikrowelleninterferometer auf Basis eines Vektornetzwerkanalysators erstmalig etabliert. Dieses neue Messsystem wurde im Vorfeld detailliert untersucht, um das korrekte Zusammenspiel aller Komponenten zu überprüfen. In diesem Zusammenhang wurde ein frequenzaufgelöstes Mikrowelleninterferometer zur Messung der Elektronendichte in einer Fluoreszenzlampe aufgebaut. Durch diesen neuartigen Ansatz konnte der Einfluss der dielektrischen Umhüllung (Glasrohr der Lampe) auf die Mikrowelleninterferometrie untersucht werden. In einer weiteren Untersuchung an einem Induktiv Gekoppelten Plasma wurden die Resultate dieses Messsystems mit denen von Langmuir-Sondenmessungen. Auf Grund der konstruktiven Gegebenheiten des Reaktors ist das Plasma nur über ein Fenster für das Mikrowelleninterferometer zugänglich. Der Vergleich der ermittelten Elektronendichten ergab einen Unterschied von Faktor zwei zwischen Interferometer und Langmuir-Sonde. Die Untersuchungen an der Fluoreszenzlampe und dem Induktiv Gekoppelten Plasma zeigten zum einen die korrekte Funktion des neu etablierten frequenzvariablen Mikrowelleninterferometers mit erreichbaren Phasenauflösungen unterhalb von 0,1 mrad. Zum anderen wurde festgestellt, dass die dielektrische Umhüllung des Plasmas zu einem systematischen Fehler von bis 53 % bei der Elektronendichtebestimmung führen kann. Diese gewonnenen Erkenntnisse hatten bei der Konzipierung des Mikrowelleninterferometers zur Untersuchung der Plasmamikrowellenwechselwirkung einen entscheidenden Einfluss. Neben der Untersuchung des Plasmas ist ebenfalls eine Diagnostik des Mikrowellenfeldes nötig, um die Plasmamikrowellenwechselwirkung dieser Entladung experimentell zu charakterisieren. Auf Grundlage dieser Daten können die Resultate des Modells bewertet werden, die einen Einblick in die Plasmaquelle und ihrer dynamischen Vorgänge erlaubt, was für die Weiterentwicklung der Applikationen essentiell ist. Aus diesem Grund ist ein heterodynes Reflektometer entwickelt worden. Dieses Messsystem wurde umfangreich getestet und kann mit einer maximalen Zeitauflösung von 100 ns den komplexen Reflektionsfaktor mit einer Phasengenauigkeit von 10 mrad bestimmen. Das Reflektometer erlaubt einen experimentellen Zugang zur aktiven Zone schon in der Frühphase der Entladung. Mit Hilfe der Diagnostiken zur Untersuchung des Plasmas und des Mikrowellenfeldes wurde die Entladung von der Zündung bis zur stationären Phase charakterisiert und mit den Ergebnissen des Modells verglichen. Es zeigte sich eine gute Übereinstimmung im Millisekundenzeitbereich, sowie eine starke Dynamik im Reflektionsfaktor in der ersten Millisekunde, hervorgerufen durch die Plasmamikrowellenwechselwirkung. Durch die hohe Zeitauflösung des Reflektometers konnten diese Vorgänge im Mikrosekundenzeitbereich erstmalig experimentell aufgelöst werden, was die Interpretation mittels des Modells möglich macht. Es konnten die Vorgänge während der Zündung des Plasmas detailliert untersucht werden und damit die Richtigkeit von Annahmen, die bei der Entwicklung der Zündtechnologie getroffen wurden, überprüft werden. Dieses erworbene grundlegende Verständnis ermöglicht eine Weiterentwicklung dieser Technologie. Mit Hilfe der erzielten Ergebnisse wurde eine neue Optimierungsstrategie für die Abstimmung der Mikrowellenplasmaquelle entwickelt. Dies führte zu einer wesentlichen Verbesserung der Reproduzierbarkeit der mikrobiologischen Ergebnisse. Darüber hinaus bilden die erzielten Ergebnisse eine solide Grundlage für weitere experimentelle und theoretische Untersuchungen dieser Entladung in beispielsweise anderen Arbeitsgasen.