Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
Institute
Publisher
- Frontiers Media S.A. (1)
- MDPI (1)
Human cytomegalovirus (HCMV) latency is typically harmless but reactivation can be largely detrimental to immune compromised hosts. We modeled latency and reactivation using a traceable HCMV laboratory strain expressing the Gaussia luciferase reporter gene (HCMV/GLuc) in order to interrogate the viral modulatory effects on the human adaptive immunity. Humanized mice with long-term (more than 17 weeks) steady human T and B cell immune reconstitutions were infected with HCMV/GLuc and 7 weeks later were further treated with granulocyte-colony stimulating factor (G-CSF) to induce viral reactivations. Whole body bio-luminescence imaging analyses clearly differentiated mice with latent viral infections vs. reactivations. Foci of vigorous viral reactivations were detectable in liver, lymph nodes and salivary glands. The number of viral genome copies in various tissues increased upon reactivations and were detectable in sorted human CD14+, CD169+, and CD34+ cells. Compared with non-infected controls, mice after infections and reactivations showed higher thymopoiesis, systemic expansion of Th, CTL, Treg, and Tfh cells and functional antiviral T cell responses. Latent infections promoted vast development of memory CD4+ T cells while reactivations triggered a shift toward effector T cells expressing PD-1. Further, reactivations prompted a marked development of B cells, maturation of IgG+ plasma cells, and HCMV-specific antibody responses. Multivariate statistical methods were employed using T and B cell immune phenotypic profiles obtained with cells from several tissues of individual mice. The data was used to identify combinations of markers that could predict an HCMV infection vs. reactivation status. In spleen, but not in lymph nodes, higher frequencies of effector CD4+ T cells expressing PD-1 were among the factors most suited to distinguish HCMV reactivations from infections. These results suggest a shift from a T cell dominated immune response during latent infections toward an exhausted T cell phenotype and active humoral immune response upon reactivations. In sum, this novel in vivo humanized model combined with advanced analyses highlights a dynamic system clearly specifying the immunological spatial signatures of HCMV latency and reactivations. These signatures can be merged as predictive biomarker clusters that can be applied in the clinical translation of new therapies for the control of HCMV reactivation.
Background: Following acute pulmonary embolism (PE), a relevant number of patients experience decreased exercise capacity which can be associated with disturbed pulmonary perfusion. Cardiopulmonary exercise testing (CPET) shows several patterns typical for disturbed pulmonary perfusion. Research question: We aimed to examine whether CPET can also provide prognostic information in chronic thromboembolic pulmonary hypertension (CTEPH). Study Design and Methods: We performed a multicenter retrospective chart review in Germany between 2002 and 2020. Patients with CTEPH were included if they had ≥6 months of follow-up and complete CPET and hemodynamic data. Symptom-limited CPET was performed using a cycle ergometer (ramp or Jones protocol). The association of anthropometric data, comorbidities, symptoms, lung function, and echocardiographic, hemodynamic, and CPET parameters with survival was examined. Mortality prediction models were calculated by Cox regression with backward selection. Results: 345 patients (1532 person-years) were included; 138 underwent surgical treatment (pulmonary endarterectomy or balloon pulmonary angioplasty) and 207 received only non-surgical treatment. During follow-up (median 3.5 years), 78 patients died. The death rate per 1000 person-years was 24.9 and 74.2 in the surgical and non-surgical groups, respectively (p < 0.001). In age- and sex-adjusted Cox regression analyses, CPET parameters including peak oxygen uptake (VO2peak, reflecting cardiopulmonary exercise capacity) were prognostic in the non-surgical group but not in the surgical group. In mortality prediction models, age, sex, VO2peak (% predicted), and carbon monoxide transfer coefficient (% predicted) showed significant prognostic relevance in both the overall cohort and the non-surgical group. In the non-surgical group, Kaplan–Meier analysis showed that patients with VO2peak below 53.4% predicted (threshold identified by receiver operating characteristic analysis) had increased mortality (p = 0.007). Interpretation: The additional measurement of cardiopulmonary exercise capacity by CPET allows a more precise prognostic evaluation in patients with CTEPH. CPET might therefore be helpful for risk-adapted treatment of CTEPH.