Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- - (1)
- 1,1-Dehydration (1)
- Carbenes (1)
- Dehydrogenation (1)
- Dithiolene (1)
- Elimination (1)
- Hydrated Carbenes (1)
- Modelle des Molybdän-Cofaktors (1)
- Molybdenum cofactor (moco) (1)
- Molybdenum cofactor (moco) models (1)
Institute
Publisher
- Wiley (2)
- International Union of Crystallography (1)
- MDPI (1)
Aufgrund der extremen Instabilität des Molybdän Cofaktors (MoCo) ist eine genauere Untersuchung der aktiven Zentren der lebenswichtigen MoCo-abhängigen Enzyme allein durch biochemische Methoden fast unmöglich. Hierfür liefert eine chemische Modellierung des Cofaktors die einzige Möglichkeit einen tieferen Einblick in seine Struktur und Funktion.
Die vorliegende Dissertation ermöglicht einen weitaus tieferen Einblick in Struktur-Funktionsbeziehung des Molybdän-Cofaktors hinsichtlich des zentralen Metalls und des Molybdopterin-Liganden. Zunächst wurde die Rolle des Molybdänzentrums in den Modellverbindungen detailliert analysiert. Hierfür wurde in den synthetisierten Modellen Molybdän mit Rhenium, ausgetauscht. Die erhaltenen Komplexe wurden zuerst umfangreichend durch verschiedene Methoden Kristallstrukturanalyse, IR-, Raman-, NMR-, 2D-NMR-Spektroskopie, temperaturabhängige Elektrochemie und quantenchemischen Berechnungen analysiert und auf Analogien und Unterschiede verglichen. Dabei wurde auf der Suche eines MoCo-Modells, das die richtige Balance zwischen katalytischer Aktivität und Stabilität besitzt, untersucht, ob Rhenium eine potenzielle Alternative zu Molybdän darstellen kann.
Um einen tieferen Einblick in die Chemie des Pterin-Strukturabschnitts von MoCo zu erschaffen, beschäftigt sich diese Arbeit mit der Feinabstimmung von Chinoxalin- und Pterin-Dithiolen-Liganden sowie mit der Entwicklung deren Molybdän-Komplexen. Dazu konnten neuartige Chinoxalin- und Pterin-Dithiolen-Liganden synthetisiert werden, die als Modell-Liganden für die Erforschung der Biosynthese des MoCos fungieren können. Hierin wird die Synthese und die vollständige Charakterisierung eines neuartigen Oxo-Bis(pterin)dithiolen-Molybdän-Komplexes beschrieben. Durch 2D-NMR Spektroskopie konnte die Struktur des erhaltenen Komplexes in Lösung detailliert analysiert werden. Schließlich wurden im Rahmen der vorliegenden Arbeit erstmals durchgeführte Untersuchungen zur Bindung von chemisch synthetisierten MoCo-Modellen mit dem Apoenzym der Trimethylamin-N-Oxid-Reduktase unternommen. Dabei konnte die essenzielle Rolle des Pterin-Gerüstes für die richtige Platzierung des Cofaktors in der Bindungstasche des Apoenzyms etwas näher aufgeklärt werden. Zukünftig könnten noch strukturell genauere MoCo-Modelle den Weg für die Synthese einer semi-artifiziellen Sulfitoxidase, die als eine Behandlungsmöglichkeit der Molybdän-Cofaktor-Defizienz (MoCoD) und der isolierten Sulfitoxidase-Defizienz (iSOD) eingesetzt werden, eröffnen.
Herein, a new type of carbodicarbene (CDC) comprising two different classes of carbenes is reported; NHC and CAAC as donor substituents and compare the molecular structure and coordination to Au(I)Cl to those of NHC‐only and CAAC‐only analogues. The conjugate acids of these three CDCs exhibit notable redox properties. Their reactions with [NO][SbF6] were investigated. The reduction of the conjugate acid of CAAC‐only based CDC with KC8 results in the formation of hydrogen abstracted/eliminated products, which proceed through a neutral radical intermediate, detected by EPR spectroscopy. In contrast, the reduction of conjugate acids of NHC‐only and NHC/CAAC based CDCs led to intermolecular reductive (reversible) carbon–carbon sigma bond formation. The resulting relatively elongated carbon–carbon sigma bonds were found to be readily oxidized. They were, thus, demonstrated to be potent reducing agents, underlining their potential utility as organic electron donors and n‐dopants in organic semiconductor molecules.
Herein we report secondary pyrrolidin-2-ols as a source of cyclic (alkyl)(amino)carbenes (CAAC) for the synthesis of CAAC-CuI-complexes and cyclic thiones when reacted with CuI-salts and elemental sulfur, respectively, under reductive elimination of water from the carbon(IV)-center. This result demonstrates a convenient and facile access to CAAC-based CuI-salts, which are well known catalysts for different organic transformations. It further establishes secondary alcohols to be a viable source of carbenes—realizing after 185 years Dumas’ dream who tried to prepare the parent carbene (CH2) by 1,1-dehydration of methanol. Addressed is also the reactivity of water towards CAACs, which proceeds through an oxidative addition of the O−H bond to the carbon(II)-center. This emphasizes the ability of carbon-compounds to mimic the reactivity of transition-metal complexes: reversible oxidative addition and reductive elimination of the O−H bond to/from the C(II)/C(IV)-centre.