Refine
Document Type
- Article (8)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- - (3)
- mass spectrometry (2)
- neuronal plasticity (2)
- BDNF (brain-derived neurotrophic factor) (1)
- CNS—central nervous system (1)
- FTSJ1 (1)
- HPTLC (1)
- Intellectual disability (1)
- Learning (1)
- Memory (1)
Institute
Publisher
- MDPI (3)
- Frontiers Media S.A. (2)
- Nature Publishing Group (1)
- SAGE Publications (1)
- Springer Nature (1)
Simple Summary
Neuronal plasticity refers to the brain’s ability to adapt in response to activity-dependent changes. This process, among others, allows the brain to acquire memory or to compensate for a neurocognitive deficit. We analyzed adult FTSJ1-deficient mice in order to gain insight into the role of FTSJ1 in neuronal plasticity. These mice displayed alterations in the hippocampus (a brain structure that is involved in memory and learning, among other functions) e.g., in the form of changes in dendritic spines. Changes in dendritic spines are considered to represent a morphological hallmark of altered neuronal plasticity, and thus FTSJ1 deficiency might have a direct effect upon the capacity of the brain to adapt to plastic changes. Long-term potentiation (LTP) is an electrophysiological correlate of neuronal plasticity, and is related to learning and to processes attributed to memory. Here we show that LTP in FTSJ1-deficient mice is reduced, hinting at disturbed neuronal plasticity. These findings suggest that FTSJ1 deficiency has an impact on neuronal plasticity not only morphologically but also on the physiological level.
Abstract
The role of the tRNA methyltransferase FTSJ1 in the brain is largely unknown. We analyzed whether FTSJ1-deficient mice (KO) displayed altered neuronal plasticity. We explored open field behavior (10 KO mice (aged 22–25 weeks)) and 11 age-matched control littermates (WT) and examined mean layer thickness (7 KO; 6 WT) and dendritic spines (5 KO; 5 WT) in the hippocampal area CA1 and the dentate gyrus. Furthermore, long-term potentiation (LTP) within area CA1 was investigated (5 KO; 5 WT), and mass spectrometry (MS) using CA1 tissue (2 each) was performed. Compared to controls, KO mice showed a significant reduction in the mean thickness of apical CA1 layers. Dendritic spine densities were also altered in KO mice. Stable LTP could be induced in the CA1 area of KO mice and remained stable at for at least 1 h, although at a lower level as compared to WTs, while MS data indicated differential abundance of several proteins, which play a role in neuronal plasticity. FTSJ1 has an impact on neuronal plasticity in the murine hippocampal area CA1 at the morphological and physiological levels, which, in conjunction with comparable changes in other cortical areas, might accumulate in disturbed learning and memory functions.
SLC35F1 is a member of the sugar-like carrier (SLC) superfamily that is expressed in the mammalian brain. Malfunction of SLC35F1 in humans is associated with neurodevelopmental disorders. To get insight into the possible roles of Slc35f1 in the brain, we generated Slc35f1-deficient mice. The Slc35f1-deficient mice are viable and survive into adulthood, which allowed examining adult Slc35f1-deficient mice on the anatomical as well as behavioral level. In humans, mutation in the SLC35F1 gene can induce a Rett syndrome-like phenotype accompanied by intellectual disability (Fede et al. Am J Med Genet A 185:2238–2240, 2021). The Slc35f1-deficient mice, however, display only a very mild phenotype and no obvious deficits in learning and memory as, e.g., monitored with the novel object recognition test or the Morris water maze test. Moreover, neuroanatomical parameters of neuronal plasticity (as dendritic spines and adult hippocampal neurogenesis) are also unaltered. Thus, Slc35f1-deficient mice display no major alterations that resemble a neurodevelopmental phenotype.
Tissue sections, which are widely used in research and diagnostic laboratories and have already been examined by immunohistochemistry (IHC), may subsequently provide a resource for proteomic studies, even though only small amount of protein is available. Therefore, we established a workflow for tandem mass spectrometry-based protein profiling of IHC specimens and characterized defined brain area sections. We investigated the CA1 region of the hippocampus dissected from brain slices of adult C57BL/6J mice. The workflow contains detailed information on sample preparation from brain slices, including removal of antibodies and cover matrices, dissection of region(s) of interest, protein extraction and digestion, mass spectrometry measurement, and data analysis. The Gene Ontology (GO) knowledge base was used for further annotation. Literature searches and Gene Ontology annotation of the detected proteins verify the applicability of this method for global protein profiling using formalin-fixed and embedded material and previously used IHC slides.
Niemann–Pick type C1 (NPC1) is a lysosomal storage disorder, inherited as an
autosomal-recessive trait. Mutations in the Npc1 gene result in malfunction of the NPC1 protein,
leading to an accumulation of unesterified cholesterol and glycosphingolipids. Beside visceral
symptoms like hepatosplenomegaly, severe neurological symptoms such as ataxia occur. Here,
we analyzed the sphingosine-1-phosphate (S1P)/S1P receptor (S1PR) axis in different brain regions
of Npc1−/− mice and evaluated specific effects of treatment with 2-hydroxypropyl-β-cyclodextrin
(HPβCD) together with the iminosugar miglustat. Using high-performance thin-layer chromatography
(HPTLC), mass spectrometry, quantitative real-time PCR (qRT-PCR) and western blot analyses, we
Int. J. Mol. Sci. 2020, 21, 4502; doi:10.3390/ijms21124502 www.mdpi.com/journal/ijms
Int. J. Mol. Sci. 2020, 21, 4502 2 of 31
studied lipid metabolism in an NPC1 mouse model and human skin fibroblasts. Lipid analyses
showed disrupted S1P metabolism in Npc1−/− mice in all brain regions, together with distinct changes
in S1pr3/S1PR3 and S1pr5/S1PR5 expression. Brains of Npc1−/− mice showed only weak treatment
effects. However, side effects of the treatment were observed in Npc1+/+ mice. The S1P/S1PR axis
seems to be involved in NPC1 pathology, showing only weak treatment effects in mouse brain. S1pr
expression appears to be affected in human fibroblasts, induced pluripotent stem cells (iPSCs)-derived
neural progenitor and neuronal differentiated cells. Nevertheless, treatment-induced side effects
make examination of further treatment strategies indispensable