Refine
Document Type
- Article (8)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- platelets (3)
- - (1)
- FcγRIIA (1)
- FcγRIIa (1)
- PF4 (1)
- aPF4/H antibodies (1)
- bacteria (1)
- cytoskeleton (1)
- immune complex (1)
- leukocidins (1)
Institute
- Institut für Immunologie u. Transfusionsmedizin - Abteilung Transfusionsmedizin (5)
- Institut für Immunologie u. Transfusionsmedizin - Abteilung Immunologie (1)
- Institut für Pharmakologie (1)
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung (MNF) (1)
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung (UMG) (1)
- Mathematisch-Naturwissenschaftliche Fakultät (1)
Publisher
- Ferrata Storti Foundation (2)
- Nature Publishing Group (2)
- Wiley (2)
- MDPI (1)
Abstract
Background
Toxins are key virulence determinants of pathogens and can impair the function of host immune cells, including platelets. Insights into pathogen toxin interference with platelets will be pivotal to improve treatment of patients with bacterial bloodstream infections.
Materials and Methods
In this study, we deciphered the effects of Staphylococcus aureus toxins α‐hemolysin, LukAB, LukDE, and LukSF on human platelets and compared the effects with the pore forming toxin pneumolysin of Streptococcus pneumoniae. Activation of platelets and loss of platelet function were investigated by flow cytometry, aggregometry, platelet viability, fluorescence microscopy, and intracellular calcium release. Thrombus formation was assessed in whole blood.
Results
α‐hemolysin (Hla) is known to be a pore‐forming toxin. Hla‐induced calcium influx initially activates platelets as indicated by CD62P and αIIbβ3 integrin activation, but also induces finally alterations in the phenotype of platelets. In contrast to Hla and pneumolysin, S. aureus bicomponent pore‐forming leukocidins LukAB, LukED, and LukSF do not bind to platelets and had no significant effect on platelet activation and viability. The presence of small amounts of Hla (0.2 µg/ml) in whole blood abrogates thrombus formation indicating that in systemic infections with S. aureus the stability of formed thrombi is impaired. Damage of platelets by Hla was not neutralized by intravenous immune globulins.
Conclusion
Our findings might be of clinical relevance for S. aureus induced endocarditis. Stabilizing the aortic‐valve thrombi by inhibiting Hla‐induced impairment of platelets might reduce the risk for septic (micro‐)embolization.
The multidrug resistance protein 4 (MRP4) is highly expressed in platelets and several lines of evidence point to an impact on platelet function. MRP4 represents a transporter for cyclic nucleotides as well as for certain lipid mediators. The aim of the present study was to comprehensively characterize the effect of a short-time specific pharmacological inhibition of MRP4 on signaling pathways in platelets. Transport assays in isolated membrane vesicles showed a concentrationdependent inhibition of MRP4-mediated transport of cyclic nucleotides, thromboxane (Tx)B2 and fluorescein (FITC)- labeled sphingosine-1-phosphate (S1P) by the selective MRP4 inhibitor Ceefourin-1. In ex vivo aggregometry studies in human platelets, Ceefourin-1 significantly inhibited platelet aggregation by about 30-50% when ADP or collagen was used as activating agents, respectively. Ceefourin-1 significantly lowered the ADP-induced activation of integrin aIIbb3, indicated by binding of FITC-fibrinogen (about 50% reduction at 50 mM Ceefourin-1), and reduced calcium influx. Furthermore, pre-incubation with Ceefourin-1 significantly increased PGE1- and cinaciguat-induced vasodilatorstimulated phosphoprotein (VASP) phosphorylation, indicating increased cytosolic cAMP as well as cGMP concentrations, respectively. The release of TxB2 from activated human platelets was also attenuated. Finally, selective MRP4 inhibition significantly reduced both the total area covered by thrombi and the average thrombus size by about 40% in a flow chamber model. In conclusion, selective MRP4 inhibition causes reduced platelet adhesion and thrombus formation under flow conditions. This finding is mechanistically supported by inhibition of integrin aIIbb3 activation, elevated VASP phosphorylation and reduced calcium influx, based on inhibited cyclic nucleotide and thromboxane transport as well as possible further mechanisms.
Vector-based SARS-CoV-2 vaccines have been associated with vaccine- induced thrombosis with thrombocytopenia syndrome (VITT/TTS), but the causative factors are still unresolved. We comprehensively analyzed the ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2.S (Johnson and Johnson) vaccines. ChAdOx1 nCoV-19 contains significant amounts of host cell protein impurities, including functionally active proteasomes, and adenoviral proteins. A much smaller amount of impurities was found in Ad26.COV2.S. Platelet factor 4 formed complexes with ChAdOx1 nCoV-19 constituents, but not with purified virions from ChAdOx1 nCoV-19 or with Ad26.COV2.S. Vascular hyperpermeability was induced by ChAdOx nCoV-19 but not by Ad26.COV2.S. These differences in impurities together with EDTAinduced capillary leakage might contribute to the higher incidence rate of VITT associated with ChAdOx1 nCoV-19 compared to Ad26.COV2.S.
Abstract
Background
Heparin induced thrombocytopenia (HIT) is likely a misdirected bacterial host defense mechanism. Platelet factor 4 (PF4) binds to polyanions on bacterial surfaces exposing neo‐epitopes to which HIT antibodies bind. Platelets are activated by the resulting immune complexes via FcγRIIA, release bactericidal substances, and kill Gram‐negative Escherichia coli.
Objectives
To assess the role of PF4, anti‐PF4/H antibodies and FcγRIIa in killing of Gram‐positive bacteria by platelets.
Methods
Binding of PF4 to protein‐A deficient Staphylococcus aureus (SA113Δspa) and non‐encapsulated Streptococcus pneumoniae (D39Δcps) and its conformational change were assessed by flow cytometry using monoclonal (KKO,5B9) and patient derived anti‐PF4/H antibodies. Killing of bacteria was quantified by counting colony forming units (cfu) after incubation with platelets or platelet releasate. Using flow cytometry, platelet activation (CD62P‐expression, PAC‐1 binding) and phosphatidylserine (PS)‐exposure were analyzed.
Results
Monoclonal and patient‐derived anti‐PF4/H antibodies bound in the presence of PF4 to both S. aureus and S. pneumoniae (1.6‐fold increased fluorescence signal for human anti‐PF4/H antibodies to 24.0‐fold increase for KKO). Staphylococcus aureus (5.5 × 104cfu/mL) was efficiently killed by platelets (2.7 × 104cfu/mL) or their releasate (2.9 × 104cfu/mL). Killing was not further enhanced by PF4 or anti‐PF4/H antibodies. Blocking FcγRIIa had no impact on killing of S. aureus by platelets. In contrast, S. pneumoniae was not killed by platelets or releasate. Instead, after incubation with pneumococci platelets were unresponsive to TRAP‐6 stimulation and exposed high levels of PS.
Conclusions
Anti‐PF4/H antibodies seem to have only a minor role for direct killing of Gram‐positive bacteria by platelets. Staphylococcus aureus is killed by platelets or platelet releasate. In contrast, S. pneumoniae affects platelet viability.
Little is known about mechanics underlying the interaction among platelets during activation and aggregation. Although the strength of a blood thrombus has likely major biological importance, no
previous study has measured directly the adhesion forces of single platelet-platelet interaction at different activation states. Here, we filled this void first, by minimizing surface mediated plateletactivation and second, by generating a strong adhesion force between a single platelet and an AFM cantilever, preventing early platelet detachment. We applied our setup to measure rupture forces between two platelets using different platelet activation states, and blockade of platelet receptors. The rupture force was found to increase proportionally to the degree of platelet activation, but reduced with blockade of specific platelet receptors. Quantification of single platelet-platelet interaction provides major perspectives for testing and improving biocompatibility of new materials; quantifying the effect of drugs on platelet function; and assessing the mechanical characteristics of acquired/inherited platelet
defects.
Platelet adhesion and spreading at the sites of vascular injury is vital to hemostasis. As an integral part of the innate immune system, platelets interact with opsonized bacterial pathogens through FcγRIIA and contribute to host defense. As mechanoscavangers, platelets actively migrate and capture bacteria via cytoskeleton-rich, dynamic structures, such as filopodia and lamellipodia. However, the role of human platelet FcγRIIA in cytoskeleton-dependent interaction with opsonized bacteria is not well understood. To decipher this, we used a reductionist approach with well-defined micropatterns functionalized with immunoglobulins mimicking immune complexes at planar interfaces and bacteriamimetic microbeads. By specifically blocking of FcγRIIA and selective disruption of the platelet cytoskeleton, we show that both functional FcγRIIA and cytoskeleton are necessary for human platelet adhesion and haptotaxis. The direct link between FcγRIIA and the cytoskeleton is further explored by single-particle tracking. We then demonstrate the relevance of cytoskeleton-dependent differential mobilities of FcγRIIA on bacteria opsonized with the chemokine platelet factor 4 (PF4) and patient-derived anti-PF4/polyanion IgG. Our data suggest that efficient capture of opsonized bacteria during host-defense is governed by mobility dynamics of FcγRIIA on filopodia and lamellipodia, and the cytoskeleton plays an essential role in platelet morphodynamics at biological interfaces that display immune complexes.
Inherited platelet disorders affecting the human platelet cytoskeleton result in increased bleeding risk. However, deciphering their impact on cytoskeleton-dependent intrinsic biomechanics of platelets remains challenging and represents an unmet need from a diagnostic and prognostic perspective. It is currently unclear whether ex vivo anticoagulants used during collection of peripheral blood impact the mechanophenotype of cellular components of blood. Using unbiased, high-throughput functional mechanophenotyping of single human platelets by real-time deformability cytometry, we found that ex vivo anticoagulants are a critical pre-analytical variable that differentially influences platelet deformation, their size, and functional response to agonists by altering the cytoskeleton. We applied our findings to characterize the functional mechanophenotype of platelets from a patient with Myosin Heavy Chain 9 (MYH9) related macrothrombocytopenia. Our data suggest that platelets from MYH9 p.E1841K mutation in humans affecting platelet non-muscle myosin heavy chain IIa (NMMHC-IIA) are biomechanically less deformable in comparison to platelets from healthy individuals.
Divalent magnesium restores cytoskeletal storage lesions in cold-stored platelet concentrates
(2022)
Cold storage of platelet concentrates (PC) has become attractive due to the reduced risk of bacterial proliferation, but in vivo circulation time of cold-stored platelets is reduced. Ca2+ release from storage organelles and higher activity of Ca2+ pumps at temperatures < 15 °C triggers cytoskeleton changes. This is suppressed by Mg2+ addition, avoiding a shift in Ca2+ hemostasis and cytoskeletal alterations. We report on the impact of 2–10 mM Mg2+ on cytoskeleton alterations of platelets from PC stored at room temperature (RT) or 4 °C in additive solution (PAS), 30% plasma. Deformation of platelets was assessed by real-time deformability cytometry (RT-DC), a method for biomechanical cell characterization. Deformation was strongly affected by storage at 4 °C and preserved by Mg2+ addition ≥ 4 mM Mg2+ (mean ± SD of median deformation 4 °C vs. 4 °C + 10 mM Mg2+ 0.073 ± 0.021 vs. 0.118 ± 0.023, p < 0.01; n = 6, day 7). These results were confirmed by immunofluorescence microscopy, showing that Mg2+ ≥ 4 mM prevents 4 °C storage induced cytoskeletal structure lesion. Standard in vitro platelet function tests showed minor differences between RT and cold-stored platelets. Hypotonic shock response was not significantly different between RT stored (56.38 ± 29.36%) and cold-stored platelets with (55.22 ± 11.16%) or without magnesium (45.65 ± 11.59%; p = 0.042, all n = 6, day 1). CD62P expression and platelet aggregation response were similar between RT and 4 °C stored platelets, with minor changes in the presence of higher Mg2+ concentrations. In conclusion, increasing Mg2+ up to 10 mM in PAS counteracts 4 °C storage lesions in platelets, maintains platelet cytoskeletal integrity and biomechanical properties comparable to RT stored platelets.